login
A245435
For any composite number n with more than a single prime factor, take the polynomial defined by the product of the terms (x-pi)^ei, where pi are the prime factors of n with multiplicities ei. Integrate this polynomial from the minimum to the maximum value of pi. This sequence lists the values of the integrals that are integer.
2
-36, -288, -36, 0, -972, -288, 0, -2304, -36, -500, -33750, -7776, -2304, 0, -12348, -36, -288, -4500, -18432, -108, -4096, -26244, -7776, -972, -5000, -47916, -1372, -36, -36, -972, -79092, -1728, -26244, 500, -98784, -4500, -43904, -36000, -16875, -2304, -8000
OFFSET
1,1
COMMENTS
Corresponding values of the integrals generated by the terms of A245284.
LINKS
EXAMPLE
n=55 is the first number for which the integral is integer. In fact its prime factors are 5 and 11: min(pi)=5, max(pi)=11. Polynomial: (x-5)*(x-11)= x^2-16*x+55. Integral: x^3/3-8*x^2+55*x. The value of the integral from x=5 to x=11 is -36.
MAPLE
with(numtheory): P:=proc(i) local a, b, c, d, k, m, m1, m2, n, t;
for k from 1 to i do a:=ifactors(k)[2]; b:=nops(a); c:=op(a); d:=1;
if b>1 then m1:=c[1, 1]; m2:=0; for n from 1 to b do
for m from 1 to c[n, 2] do d:=d*(x-c[n, 1]); od;
if c[n, 1]<m1 then m1:=c[n, 1]; fi;
if c[n, 1]>m2 then m2:=c[n, 1]; fi; od;
t:=int(d, x=m1..m2); if type(t, integer) then print(t); fi; fi; od; end:
P(10^4);
CROSSREFS
KEYWORD
easy,sign
AUTHOR
Paolo P. Lava, Aug 22 2014
STATUS
approved