login
A245437
Expansion of x^5/(x^6-x^4-x^2-x+1).
1
0, 0, 0, 0, 0, 1, 1, 2, 3, 6, 10, 17, 29, 50, 86, 147, 252, 432, 741, 1270, 2177, 3732, 6398, 10968, 18802, 32232, 55255, 94723, 162382, 278369, 477204, 818064, 1402395, 2404105, 4121322, 7065122, 12111635, 20762798, 35593360, 61017175, 104600848, 179315699
OFFSET
0,8
COMMENTS
G.f. taken from p. 12 of the Brlek et al. reference.
LINKS
Srecko Brlek, Andrea Frosini, Simone Rinaldi, Laurent Vuillon, Tilings by translation: enumeration by a rational language approach, The Electronic Journal of Combinatorics, vol. 13 (2006).
FORMULA
G.f.: x^5/(x^6 - x^4 - x^2 - x + 1).
a(n) = a(n-1) + a(n-2) + a(n-4) - a(n-6) for n>5.
MATHEMATICA
CoefficientList[Series[x^5/(x^6 - x^4 - x^2 - x + 1), {x, 0, 50}], x]
LinearRecurrence[{1, 1, 0, 1, 0, -1}, {0, 0, 0, 0, 0, 1}, 50] (* Bruno Berselli, Jul 22 2014 *)
PROG
(Magma) [n le 6 select Floor(n/6) else Self(n-1)+Self(n-2)+Self(n-4)-Self(n-6): n in [1..50]];
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Vincenzo Librandi, Jul 22 2014
STATUS
approved