login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A245198 Decimal expansion of the Landau-Kolmogorov constant C(3,1) for derivatives in the case L_infinity(-infinity, infinity). 7
1, 0, 4, 0, 0, 4, 1, 9, 1, 1, 5, 2, 5, 9, 5, 2, 0, 5, 7, 2, 6, 5, 0, 2, 8, 4, 1, 2, 1, 7, 8, 9, 4, 2, 6, 9, 3, 1, 6, 8, 9, 0, 2, 6, 7, 0, 1, 8, 6, 6, 3, 1, 0, 5, 4, 8, 4, 8, 7, 9, 5, 5, 4, 0, 1, 0, 0, 0, 5, 3, 1, 5, 5, 6, 9, 8, 6, 3, 4, 3, 8, 6, 8, 0, 3, 0, 2, 8, 3, 1, 8, 3, 9, 5, 3, 7, 8, 7, 4, 3, 3, 6, 4, 3 (list; constant; graph; refs; listen; history; text; internal format)
OFFSET

1,3

COMMENTS

The corresponding Landau-Kolmogorov inequality for the first and third derivative is ||f'|| <= C(3,1) ||f||^(2/3) ||f'''||^(1/3) [see S. Finch ref. for C(n,k) and the general derivative inequalities], where the real-valued function f is defined on (-infinity, infinity), the involved norm being the supremum norm, defined by ||f|| = sup |f(x)|.

Hadamard proved that if f is twice differentiable and both f and f'' are bounded, then ||f'|| <= sqrt(2) ||f||^(1/2) ||f''||^(1/2), and the constant C(2,1) = sqrt(2) is the best possible.

Kolmogorov determined best constants C(n,k), 1 <= k <= n, for the inequality between derivatives in terms of Favard constants (A050970/A050971). These formulas giving C(n,k) include special cases discovered by G. E. Shilov for small values of n and k.

[All comments made after Steven R. Finch].

REFERENCES

Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 3.3 Landau-Kolmogorov constants, p. 213.

LINKS

Table of n, a(n) for n=1..104.

Eric Weisstein's MathWorld, Landau-Kolmogorov Constants

Eric Weisstein's MathWorld, Favard Constants

FORMULA

C(n,k) = a(n-k)*a(n)^(-1+k/n), where a(n) = (4/Pi)*sum_{j=0..infinity}((-1)^j/(2j+1))^(n+1) or a(n) = 4*Pi^n*f(n+1), f(n) being the n-th Favard constant A050970(n)/A050971(n).

C(3,1) = 3^(2/3)/2 = (9/8)^(1/3).

EXAMPLE

1.0400419115259520572650284121789426931689026701866310548487955401...

MATHEMATICA

a[n_] := (4/Pi)*Sum[((-1)^j/(2*j+1))^(n+1), {j, 0, Infinity}]; c[n_, k_] := a[n-k]*a[n]^(-1+k/n); RealDigits[c[3, 1], 10, 104] // First

(* or, directly: *) RealDigits[3^(2/3)/2, 10, 104] // First

CROSSREFS

Cf. A050970, A050971, A244091.

Sequence in context: A035639 A284689 A037214 * A203285 A203542 A204301

Adjacent sequences:  A245195 A245196 A245197 * A245199 A245200 A245201

KEYWORD

nonn,cons,easy

AUTHOR

Jean-Fran├žois Alcover, Jul 17 2014

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 5 16:24 EDT 2020. Contains 333245 sequences. (Running on oeis4.)