

A037214


Expansion of (sum(n*q^(n^2), n=0..inf))^2.


2



0, 0, 1, 0, 0, 4, 0, 0, 4, 0, 6, 0, 0, 12, 0, 0, 0, 8, 9, 0, 16, 0, 0, 0, 0, 24, 10, 0, 0, 20, 0, 0, 16, 0, 30, 0, 0, 12, 0, 0, 24, 40, 0, 0, 0, 36, 0, 0, 0, 0, 39, 0, 48, 28, 0, 0, 0, 0, 42, 0, 0, 60, 0, 0, 0, 72, 0, 0, 32, 0, 0, 0, 36, 48, 70, 0, 0, 0, 0, 0, 64, 0, 18, 0, 0, 120, 0, 0, 0, 80, 54, 0, 0, 0, 0, 0, 0, 72, 49
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,6


COMMENTS

The range of the sequence is {0, 1, 4, 6, 8, 9, 10, 12, 16, 18, 20, 22, 24, 28, 30, 32, 36, 38, 39, 40, ...}, cf. A248807.  M. F. Hasler, Oct 14 2014


LINKS

Table of n, a(n) for n=0..98.


FORMULA

a(n) = sum x*y for integers x,y such that x^2+y^2=n and x>0,y>=0.  Cristóbal Camarero, Oct 03 2014
If a(n)>0, then a(n)>=2*sqrt(n1) except for a(2)=1 and a(8)=4. Proof: The extremal values a nonzero term x*y in the above sum can have is x=1, y=sqrt(n1) in which case it occurs a second time with x,y swapped (except for x=y=1), and x=y=sqrt(n/2) in which case it may occur only once, but x*y=n/2 is larger than 2*sqrt(n1) for n>=15.  M. F. Hasler, Oct 14 2014


MAPLE

seq( add(T[1]*sqrt(T[2]), T in select(T>issqr(T[2]), [seq([x, nx**2], x=1..n)]) ) , n=1..50); # Cristóbal Camarero, Oct 03 2014


PROG

(PARI) N=66; q='q+O('q^N); concat([0, 0], Vec( sum(n=0, N, n*q^(n^2))^2 )) \\ Joerg Arndt, Oct 13 2014
(PARI) A037214(n)={my(y); sum(x=1, sqrtint(n\2), if(issquare(nx^2, &y), x*y))*2if(n%2==0 && issquare(n\2), n\2)} \\ M. F. Hasler, Oct 14 2014


CROSSREFS

Sequence in context: A036480 A035639 A284689 * A245198 A203285 A203542
Adjacent sequences: A037211 A037212 A037213 * A037215 A037216 A037217


KEYWORD

nonn


AUTHOR

N. J. A. Sloane.


STATUS

approved



