login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Please make a donation to keep the OEIS running. In 2018 we replaced the server with a faster one, added 20000 new sequences, and reached 7000 citations (often saying "discovered thanks to the OEIS").
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A037214 Expansion of (sum(n*q^(n^2), n=0..inf))^2. 2
0, 0, 1, 0, 0, 4, 0, 0, 4, 0, 6, 0, 0, 12, 0, 0, 0, 8, 9, 0, 16, 0, 0, 0, 0, 24, 10, 0, 0, 20, 0, 0, 16, 0, 30, 0, 0, 12, 0, 0, 24, 40, 0, 0, 0, 36, 0, 0, 0, 0, 39, 0, 48, 28, 0, 0, 0, 0, 42, 0, 0, 60, 0, 0, 0, 72, 0, 0, 32, 0, 0, 0, 36, 48, 70, 0, 0, 0, 0, 0, 64, 0, 18, 0, 0, 120, 0, 0, 0, 80, 54, 0, 0, 0, 0, 0, 0, 72, 49 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,6

COMMENTS

The range of the sequence is {0, 1, 4, 6, 8, 9, 10, 12, 16, 18, 20, 22, 24, 28, 30, 32, 36, 38, 39, 40, ...}, cf. A248807. - M. F. Hasler, Oct 14 2014

LINKS

Table of n, a(n) for n=0..98.

FORMULA

a(n) = sum x*y for integers x,y such that x^2+y^2=n and x>0,y>=0. - Cristóbal Camarero, Oct 03 2014

If a(n)>0, then a(n)>=2*sqrt(n-1) except for a(2)=1 and a(8)=4. Proof: The extremal values a nonzero term x*y in the above sum can have is x=1, y=sqrt(n-1) in which case it occurs a second time with x,y swapped (except for x=y=1), and x=y=sqrt(n/2) in which case it may occur only once, but x*y=n/2 is larger than 2*sqrt(n-1) for n>=15. - M. F. Hasler, Oct 14 2014

MAPLE

seq(  add(T[1]*sqrt(T[2]), T in select(T->issqr(T[2]), [seq([x, n-x**2], x=1..n)]) )  , n=1..50); # Cristóbal Camarero, Oct 03 2014

PROG

(PARI) N=66; q='q+O('q^N); concat([0, 0], Vec( sum(n=0, N, n*q^(n^2))^2 )) \\ Joerg Arndt, Oct 13 2014

(PARI) A037214(n)={my(y); sum(x=1, sqrtint(n\2), if(issquare(n-x^2, &y), x*y))*2-if(n%2==0 && issquare(n\2), n\2)} \\ M. F. Hasler, Oct 14 2014

CROSSREFS

Sequence in context: A036480 A035639 A284689 * A245198 A203285 A203542

Adjacent sequences:  A037211 A037212 A037213 * A037215 A037216 A037217

KEYWORD

nonn

AUTHOR

N. J. A. Sloane.

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 12 18:24 EST 2018. Contains 318081 sequences. (Running on oeis4.)