The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A243802 E.g.f.: exp( Sum_{n>=1} (exp(n*x) - 1)^n / n ). 4
 1, 1, 6, 95, 3043, 167342, 14175447, 1715544861, 280986929888, 59828264507385, 16056622678756319, 5300955907062294008, 2110872493413444115109, 997542435957462115205773, 551887323312314977683048334, 353334615697796170374209624907, 259179558930246734075836153918127 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS Compare to: exp( Sum_{n>=1} (exp(x) - 1)^n/n ) = 1/(2-exp(x)), the e.g.f. of Fubini numbers (A000670). LINKS Vaclav Kotesovec, Table of n, a(n) for n = 0..200 FORMULA a(n) ~ c * d^n * (n!)^2 / n^(3/2), where d = A317855 = (1+exp(1/r))*r^2 = 3.161088653865428813830172202588132491..., r = 0.873702433239668330496568304720719298... is the root of the equation exp(1/r)/r + (1+exp(1/r)) * LambertW(-exp(-1/r)/r) = 0, and c = 0.37498840921734807101035131780130551... . - Vaclav Kotesovec, Aug 21 2014 EXAMPLE E.g.f.: A(x) = 1 + x + 6*x^2/2! + 95*x^3/3! + 3043*x^4/4! + 167342*x^5/5! +... PROG (PARI) {a(n) = n!*polcoeff( exp( sum(m=1, n+1, (exp(m*x +x*O(x^n)) - 1)^m / m) ), n)} for(n=0, 20, print1(a(n), ", ")) CROSSREFS Cf. A244585, A244437. Sequence in context: A290984 A338788 A326436 * A119627 A336825 A116158 Adjacent sequences:  A243799 A243800 A243801 * A243803 A243804 A243805 KEYWORD nonn AUTHOR Paul D. Hanna, Aug 21 2014 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 11 18:00 EDT 2021. Contains 342888 sequences. (Running on oeis4.)