OFFSET
0,6
COMMENTS
An L-tile is a 2 X 2 square with the upper right 1 X 1 subsquare removed and no rotations are allowed.
LINKS
Alois P. Heinz, Rows n = 0..21, flattened
EXAMPLE
T(3,1) = 4:
._____. ._____. ._____. ._____.
| |_|_| |_|_|_| |_| |_| |_|_|_|
|___|_| | |_|_| |_|___| |_| |_|
|_|_|_| |___|_| |_|_|_| |_|___|
T(4,4) = 1:
._______.
| |_| |_|
|___|___|
| |_| |_|
|___|___|
T(5,6) = 2:
._________. ._________.
| |_|_| |_| |_| |_| |_|
|___| |___| | |___|___|
|_| |___|_| |___|_| |_|
| |___| |_| | |_| |___|
|___|_|___| |___|___|_| .
Triangle T(n,k) begins:
1;
1;
1, 1;
1, 4, 1;
1, 9, 20, 11, 1;
1, 16, 87, 196, 176, 46, 2;
1, 25, 244, 1195, 3145, 4431, 3161, 1007, 111, 2;
MAPLE
b:= proc(n, l) option remember; local k;
if n<2 then 1
elif min(l[])>0 then b(n-1, map(h->h-1, l))
else for k while l[k]>0 do od; expand(
b(n, subsop(k=1, l))+ `if`(n>1 and k<nops(l)
and l[k+1]=0, x*b(n, subsop(k=2, k+1=1, l)), 0))
fi
end:
T:= n-> (p-> seq(coeff(p, x, i), i=0..degree(p)))(b(n, [0$n])):
seq(T(n), n=0..10);
MATHEMATICA
b[n_, l_] := b[n, l] = Module[{k}, Which[n<2, 1, Min[l]>0, b[n-1, l-1], True, For[k = 1, l[[k]] > 0, k++]; Expand[b[n, ReplacePart[l, k -> 1]] + If[n>1 && k<Length[l] && l[[k+1]]==0, x*b[n, ReplacePart[l, {k -> 2, k+1 -> 1}]], 0]]]];
T[n_] := Function[p, Table[Coefficient[p, x, i], {i, 0, Exponent[p, x]}]][ b[n, Table[0, {n}]]];
Table[T[n], {n, 0, 10}] // Flatten (* Jean-François Alcover, Apr 12 2017, translated from Maple *)
CROSSREFS
KEYWORD
nonn,tabf
AUTHOR
Alois P. Heinz, Jun 07 2014
STATUS
approved