login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A243102 Numbers n such that the digits of (n + product of digits of n) are a nontrivial permutation of the digits of n. 2
239, 326, 364, 497, 563, 598, 613, 637, 695, 819, 1239, 1326, 1364, 1497, 1563, 1598, 1613, 1637, 1695, 1819, 2139, 2313, 2356, 2369, 2419, 2594, 2639, 2791, 3126, 3213, 3235, 3238, 3259, 3354, 3365, 3561, 4219, 4346, 4353, 4395, 4559, 4569, 4592, 4595, 4719, 4953, 4967, 5129, 5233 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

The product of digits must be divisible by 9, but is not 0. - Robert Israel, Aug 24 2014

LINKS

Jens Kruse Andersen, Table of n, a(n) for n = 1..10000

EXAMPLE

239 + 2*3*9 = 293 is a permutation of the digits of 239. Thus 239 is a member of this sequence.

MAPLE

filter:= proc(n)

local L, m;

L:= convert(n, base, 10);

m:= convert(L, `*`);

if m=0 then return false fi;

sort(L) = sort(convert(n+m, base, 10));

end proc:

select(filter, [$1..1000]); # Robert Israel, Aug 24 2014

PROG

(PARI) for(n=1, 10^5, d=digits(n); p=prod(i=1, #d, d[i]); v=digits(n+p); if(v!=d, v=vecsort(v); d=vecsort(d); if(v==d, print1(n, ", "))))

(Python)

from operator import mul

from functools import reduce

A243102 = [int(n) for n in (str(x) for x in range(1, 10**5)) if not n.count('0') and sorted(str(int(n)+reduce(mul, (int(d) for d in n)))) == sorted(n)]

# Chai Wah Wu, Aug 26 2014

CROSSREFS

Cf. A007954.

Sequence in context: A140032 A289109 A247888 * A294092 A056086 A046012

Adjacent sequences:  A243099 A243100 A243101 * A243103 A243104 A243105

KEYWORD

nonn,base

AUTHOR

Derek Orr, Aug 19 2014

EXTENSIONS

Definition edited by Robert Israel, Aug 24 2014

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 17 09:42 EDT 2018. Contains 316276 sequences. (Running on oeis4.)