login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A242938
Decimal expansion of c_e, coefficient associated with the asymptotic evaluation c_e*2^(n^2/4) of the number of subspaces of the n-dimensional vector space over the finite field F_2, n being even.
3
7, 3, 7, 1, 9, 6, 8, 8, 0, 1, 4, 6, 1, 3, 1, 6, 5, 0, 9, 1, 5, 3, 1, 9, 1, 2, 0, 8, 2, 6, 8, 0, 9, 1, 5, 8, 8, 8, 5, 8, 7, 6, 3, 5, 4, 7, 2, 2, 6, 6, 2, 2, 6, 6, 8, 9, 4, 3, 5, 4, 6, 1, 0, 4, 2, 3, 1, 0, 1, 5, 6, 7, 4, 3, 0, 0, 0, 7, 2, 8, 9, 4, 4, 7, 5, 7, 0, 8, 8, 2, 4, 7, 8, 0, 5, 5, 6, 9, 9, 5
OFFSET
1,1
REFERENCES
Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 5.7 Lengyel's constant, p. 318.
LINKS
FORMULA
(Sum_(k=-infinity..infinity) q^(-k^2)) / (prod_(j>0) (1-q^(-j))), with q = 2.
EXAMPLE
7.3719688014613165091531912...
MATHEMATICA
digits = 100; EllipticTheta[3, 0, 1/2]/NProduct[1-2^(-j), {j, 1, Infinity}, WorkingPrecision -> digits + 10, NProductFactors -> digits] // RealDigits[#, 10, digits]& // First
RealDigits[EllipticTheta[3, 0, 1/2]/QPochhammer[1/2, 1/2], 10, 100][[1]] (* Vladimir Reshetnikov, Oct 17 2016 *)
PROG
(PARI) th3(x)=1 + 2*suminf(n=1, x^n^2)
th3(1/2)/prodinf(n=1, 1-2.^-n) \\ Charles R Greathouse IV, Jun 06 2016
CROSSREFS
KEYWORD
nonn,cons
AUTHOR
STATUS
approved