

A242710


Decimal expansion of "beta", a KneserMahler polynomial constant (a constant related to the asymptotic evaluation of the supremum norm of polynomials).


3



1, 3, 8, 1, 3, 5, 6, 4, 4, 4, 5, 1, 8, 4, 9, 7, 7, 9, 3, 3, 7, 1, 4, 6, 6, 9, 5, 6, 8, 5, 0, 6, 2, 4, 1, 2, 6, 2, 8, 9, 6, 3, 7, 2, 6, 2, 2, 3, 9, 0, 7, 0, 5, 6, 0, 1, 9, 8, 7, 6, 4, 8, 4, 5, 3, 0, 0, 5, 5, 4, 9, 6, 3, 6, 3, 6, 6, 3, 6, 2, 4, 5, 4, 0, 8, 6, 3, 9, 7, 6, 7, 9, 5, 4, 4, 2, 8, 1, 1, 6
(list;
constant;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,2


REFERENCES

S. R. Finch, Mathematical Constants, Cambridge, 2003, Section 3.10 KneserMahler polynomial constants p. 232 and Section 5.23 Monomerdimer constants p. 408.


LINKS

Table of n, a(n) for n=1..100.
Kurt Mahler, A remark on a paper of mine on polynomials.,[In this paper, j is log(beta)]
Eric Weisstein's MathWorld, Gieseking's Constant


FORMULA

beta = exp(G/Pi) = exp((PolyGamma(1, 4/3)  PolyGamma(1, 2/3) + 9)/(4*sqrt(3)*Pi)), where G is Gieseking's constant (cf. A143298) and PolyGamma(1,z) the first derivative of the digamma function psi(z).
Also equals exp(Im(Li_2( 1/2  (i*sqrt(3))/2))/Pi), where Li_2 is the dilogarithm function.


EXAMPLE

1.38135644451849779337146695685...


MATHEMATICA

Exp[(PolyGamma[1, 4/3]  PolyGamma[1, 2/3] + 9)/(4*Sqrt[3]*Pi)] // RealDigits[#, 10, 100]& // First


CROSSREFS

Cf. A130834, A143298, A229728.
Sequence in context: A140272 A210962 A021728 * A084185 A073227 A016550
Adjacent sequences: A242707 A242708 A242709 * A242711 A242712 A242713


KEYWORD

nonn,cons


AUTHOR

JeanFrançois Alcover, May 21 2014


STATUS

approved



