login
A073227
Decimal expansion of e^e^e.
11
3, 8, 1, 4, 2, 7, 9, 1, 0, 4, 7, 6, 0, 2, 2, 0, 5, 9, 2, 2, 0, 9, 2, 1, 9, 5, 9, 4, 0, 9, 8, 2, 0, 3, 5, 7, 1, 0, 2, 3, 9, 4, 0, 5, 3, 6, 2, 2, 6, 6, 6, 6, 0, 7, 5, 5, 2, 6, 7, 0, 4, 1, 2, 5, 8, 0, 4, 7, 6, 8, 8, 9, 6, 7, 1, 2, 5, 9, 9, 6, 6, 1, 0, 0, 1, 0, 7, 8, 4, 9, 1, 0, 9, 2, 0, 6, 5, 7, 8, 9, 6, 0, 2, 1, 0
OFFSET
7,1
COMMENTS
A weak form of Schanuel's Conjecture implies that e^e^e is transcendental--see Marques and Sondow (2012).
LINKS
D. Marques and J. Sondow, The Schanuel Subset Conjecture implies Gelfond's Power Tower Conjecture, arXiv:1212.6931 [math.NT], 2013.
EXAMPLE
3814279.10476022059220921959409...
MATHEMATICA
RealDigits[E^E^E, 10, 120][[1]] (* Harvey P. Dale, Dec 14 2011 *)
PROG
(PARI) exp(exp(exp(1)))
(PARI) { default(realprecision, 20080); x=exp(exp(exp(1)))/1000000; for (n=7, 20000, d=floor(x); x=(x-d)*10; write("b073227.txt", n, " ", d)); } \\ Harry J. Smith, Apr 30 2009
(Magma) Exp(Exp(Exp(1))); // G. C. Greubel, May 29 2018
CROSSREFS
Cf. A001113 (e), A073226 (e^e), A004002 (e^e^...^e, n times, rounded), A073228 ((e^e)^e), A073231 ((1/e)^(1/e)^(1/e)).
Sequence in context: A021728 A242710 A084185 * A016550 A238169 A341414
KEYWORD
cons,nonn
AUTHOR
Rick L. Shepherd, Jul 22 2002
STATUS
approved