login
A242101
Number of conjugacy classes of the symmetric group S_n when conjugating only by even permutations.
1
1, 2, 4, 6, 8, 12, 16, 24, 32, 44, 58, 80, 104, 138, 180, 236, 302, 390, 496, 634, 800, 1010, 1264, 1586, 1970, 2448, 3024, 3734, 4582, 5622, 6862, 8372, 10168, 12336, 14912, 18010, 21672, 26052, 31226, 37384, 44632, 53226, 63318, 75238, 89202, 105630, 124832
OFFSET
1,2
FORMULA
For n >=2, a(n) = A000041(n) + A000700(n) = 2*A046682(n) [by a formula in A046682]. - Eric M. Schmidt, Aug 23 2014
PROG
(GAP) List([1..11], n->Size(OrbitsDomain(AlternatingGroup(IsPermGroup, n), SymmetricGroup(IsPermGroup, n), \^)));
CROSSREFS
Cf. A242099 (by dihedral group), A000041 (by symmetric group itself), A061417 (by cyclic group).
Cf. A046682.
Sequence in context: A115746 A025610 A344181 * A131117 A332290 A332293
KEYWORD
nonn
AUTHOR
Attila Egri-Nagy, Aug 14 2014
EXTENSIONS
More terms from Eric M. Schmidt, Aug 23 2014
STATUS
approved