This site is supported by donations to The OEIS Foundation.



Annual Appeal: Please make a donation to keep the OEIS running. In 2018 we replaced the server with a faster one, added 20000 new sequences, and reached 7000 citations (often saying "discovered thanks to the OEIS").
Other ways to donate

(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A061417 Number of permutations up to cyclic rotations; permutation siteswap necklaces. 11
1, 2, 4, 10, 28, 136, 726, 5100, 40362, 363288, 3628810, 39921044, 479001612, 6227066928, 87178295296, 1307675013928, 20922789888016, 355687438476444, 6402373705728018, 121645100594641896, 2432902008177690360 (list; graph; refs; listen; history; text; internal format)



If permutations are converted to (i,p(i)) permutation arrays, then this automorphism is obtained by their "SW-NE diagonal toroidal shifts" (see Matthias Engelhardt's Java program in A006841), while the Maple procedure below converts each permutation to a siteswap pattern (used in juggling), rotates it by one digit and converts the resulting new (or same) siteswap pattern back to a permutation.

When the subset of permutations listed by A064640 are subjected to the same automorphism one gets A002995.

The number of conjugacy classes of the symmetric group of degree n when conjugating only with the cyclic permutation group of degree n. - Attila Egri-Nagy, Aug 15 2014


T. D. Noe, Table of n, a(n) for n=1..100

Index entries for sequences related to necklaces


a(n) = (1/n)*Sum_{d|n} phi(n/d)*((n/d)^d)*(d!).


If I have a five-element permutation like 25431, in cycle notation (1 2 5)(3 4), I mark the numbers 1-5 clockwise onto a circle and draw directed edges from 1 to 2, from 2 to 5, from 5 to 1 and a double-way edge between 3 and 4. All the 5-element permutations that produce some rotation (discarding the labels of the nodes) of that chord diagram belong to the same equivalence class with 25431. The sequence gives the count of such equivalence classes.


Algebraic formula: with(numtheory); SSRPCC := proc(n) local d, s; s := 0; for d in divisors(n) do s := s + phi(n/d)*((n/d)^d)*(d!); od; RETURN(s/n); end;

Empirically: with(group); SiteSwapRotationPermutationCycleCounts := proc(upto_n) local b, u, n, a, r; a := []; for n from 1 to upto_n do b := []; u := n!; for r from 0 to u-1 do b := [op(b), 1+PermRank3R(SiteSwap2Perm1(rotateL(Perm2SiteSwap2(PermUnrank3Rfix(n, r)))))]; od; a := [op(a), CountCycles(b)]; od; RETURN(a); end;

PermUnrank3Rfixaux := proc(n, r, p) local s; if(0 = n) then RETURN(p); else s := floor(r/((n-1)!)); RETURN(PermUnrank3Rfixaux(n-1, r-(s*((n-1)!)), permul(p, [[n, n-s]]))); fi; end;

PermUnrank3Rfix := (n, r) -> convert(PermUnrank3Rfixaux(n, r, []), 'permlist', n);

SiteSwap2Perm1 := proc(s) local e, n, i, a; n := nops(s); a := []; for i from 1 to n do e := ((i+s[i]) mod n); if(0 = e) then e := n; fi; a := [op(a), e]; od; RETURN(convert(invperm(convert(a, 'disjcyc')), 'permlist', n)); end;


a[n_] := (1/n)*Sum[ EulerPhi[n/d]*(n/d)^d*d!, {d, Divisors[n]}]; Table[a[n], {n, 1, 21}] (* Jean-Fran├žois Alcover, Oct 09 2012, from formula *)



a061417 = sum . a047917_row  -- Reinhard Zumkeller, Mar 19 2014

(GAP) List([1..10], n->Size( OrbitsDomain( CyclicGroup(I sPermGroup, n), SymmetricGroup( IsPermGroup, n), \^))); # Attila Egri-Nagy, Aug 15 2014

(PARI) a(n) = (1/n)*sumdiv(n, d, eulerphi(n/d)*(n/d)^d*d!); \\ Indranil Ghosh, Apr 10 2017


from sympy import divisors, factorial, totient

def a(n): return sum([totient(n/d)*(n/d)**d*factorial(d) for d in divisors(n)])/n

print [a(n) for n in xrange(1, 22)] # Indranil Ghosh, Apr 10 2017


Cf. A006841, A060495. For other Maple procedures, see A060501 (Perm2SiteSwap2), A057502 (CountCycles), A057509 (rotateL), A060125 (PermRank3R and permul).

A061417[p] = A061860[p] = (p-1)!+(p-1) for all prime p's.

A064636 (derangements-the same automorphism).

A061417[n] = A064649[n]/n.

Sequence in context: A207018 A006841 A003223 * A153921 A189582 A060315

Adjacent sequences:  A061414 A061415 A061416 * A061418 A061419 A061420




Antti Karttunen, May 02 2001



Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 19 06:03 EST 2018. Contains 318245 sequences. (Running on oeis4.)