login
A241978
Numbers n such that 6^phi(n) == 1 (modulo n^2), where phi(n) is Euler's totient function.
5
66161, 330805, 534851, 2674255, 3152573, 10162169, 13371275, 50810845, 54715147, 129255493, 148170931, 254054225, 273575735, 301121113, 383006029, 646277465, 1289402357, 1505605565, 1915030145, 3228193673, 3407931413, 5721301147, 6075008171, 7528027825
OFFSET
1,1
COMMENTS
a(17) > 10^9.
LINKS
Giovanni Resta, Table of n, a(n) for n = 1..95 (terms < 10^14)
MATHEMATICA
Select[Range[65*10^7], PowerMod[6, EulerPhi[#], #^2]==1&] (* Harvey P. Dale, Jan 20 2020 *)
PROG
(PARI) for(n=2, 1e9, if(Mod(6, n^2)^(eulerphi(n))==1, print1(n, ", ")))
KEYWORD
nonn
AUTHOR
Felix Fröhlich, Aug 10 2014
EXTENSIONS
Terms a(17) and beyond from Giovanni Resta, Jan 24 2020
STATUS
approved