login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A241756 A finite sum of products of binomial coefficients: Sum_(m=0..n) binomial(-1/4, m)^2*binomial(-1/4, n-m)^2 (C. C. Grosjean's problem, denominators). 7
1, 8, 512, 4096, 2097152, 16777216, 1073741824, 8589934592, 35184372088832, 281474976710656, 18014398509481984, 144115188075855872, 73786976294838206464, 590295810358705651712, 37778931862957161709568, 302231454903657293676544 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

This sequence seems to appear also  as denominators of A277232, A277234, and A278143. - Wolfdieter Lang, Nov 16 2016

REFERENCES

E. S. Andersen and M. E. Larsen. A finite sum of products of binomial coefficients, Problem 92-18, by C. C. Grosjean, Solution. SIAM Rev. 35 (1993), 645-646.

LINKS

Table of n, a(n) for n=0..15.

P. Flajolet, B. Salvy, and Helmut Prodinger, A Finite Sum of Products of Binomial Coefficients, Problem 92-18 by C. C. Grosjean, Solution. SIAM Rev. 35 (1993), 645-646.

C. C. Grosjean, Problem no. 92-18, SIAM Rev. 34 (1992), p. 649.

M. E. Larsen, Summa Summarum, page 114.

FORMULA

GAMMA(3/4)^2 * 4F3(1/4, 1/4, -n, -n; 1, 3/4-n, 3/4-n; 1)/(GAMMA(3/4-n)^2*GAMMA(n+1)^2).

binomial(2n, n)^2*binomial(n-1/2, 2n)*(-1/4)^n.

MATHEMATICA

a[n_] := Binomial[2*n, n]^2*Binomial[n-1/2, 2*n]*(-1/4)^n; Table[a[n]//Denominator, {n, 0, 20}]

CROSSREFS

Cf. A241755, A277232, A277234, A278143.

Sequence in context: A236077 A061460 A016935 * A236220 A128794 A195804

Adjacent sequences:  A241753 A241754 A241755 * A241757 A241758 A241759

KEYWORD

nonn,frac

AUTHOR

Jean-Fran├žois Alcover, Apr 28 2014

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 18 07:11 EDT 2021. Contains 343072 sequences. (Running on oeis4.)