login
A241759
Number of partitions of n into distinct parts of the form 3^k - 2^k, cf. A001047.
5
1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1
OFFSET
0
COMMENTS
a(A241783(n)) = 0; a(A240400(n)) > 0.
LINKS
FORMULA
G.f.: Product_{k>=1} (1 + x^(3^k-2^k)). - Ilya Gutkovskiy, Jan 23 2017
MATHEMATICA
nmax = 200; CoefficientList[Series[Product[1 + x^(3^k-2^k), {k, 1, Floor[Log[nmax]/Log[2]] + 1}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Jan 24 2017 *)
PROG
(Haskell)
a241759 = p $ tail a001047_list where
p _ 0 = 1
p (k:ks) m = if m < k then 0 else p ks (m - k) + p ks m
CROSSREFS
Sequence in context: A266892 A267152 A151667 * A298249 A286993 A015274
KEYWORD
nonn
AUTHOR
Reinhard Zumkeller, Apr 28 2014
STATUS
approved