This site is supported by donations to The OEIS Foundation.

 Annual appeal: Please make a donation to keep the OEIS running! Over 6000 articles have referenced us, often saying "we discovered this result with the help of the OEIS". Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A240949 Number of partitions of n with the property that if two summands have the same parity, then their frequencies have the same parity. 1
 1, 1, 2, 3, 5, 6, 11, 11, 21, 20, 38, 31, 67, 51, 107, 83, 172, 126, 263, 192, 399, 299, 584, 437, 857, 648, 1218, 941, 1743, 1351, 2438, 1912, 3399, 2708, 4672, 3750, 6439, 5193, 8712, 7113, 11815, 9678, 15836, 13056, 21186, 17609, 28080, 23438, 37210, 31181, 48819, 41182, 64039, 54188, 83374, 70923, 108364, 92587 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS The parities of all even parts must be equal and the parities of all odd parts must be equal. LINKS Alois P. Heinz, Table of n, a(n) for n = 0..1000 EXAMPLE For example: for n=5 the partition 3,1,1 is not counted, because 3 and 1 have the same parity, but the frequency of 3 and the frequency of 1 have different parity. MATHEMATICA <

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.