login
A240947
Decimal expansion of the moment of order 1 at Pi/3 of Ls_4, where Ls_4 is a generalized log-sine integral.
0
2, 5, 5, 5, 4, 8, 5, 4, 1, 2, 9, 2, 9, 0, 7, 6, 2, 8, 5, 5, 2, 3, 8, 9, 7, 6, 1, 6, 8, 3, 3, 3, 1, 3, 1, 0, 3, 7, 7, 3, 7, 1, 7, 5, 2, 5, 3, 6, 3, 6, 6, 0, 7, 5, 4, 2, 5, 1, 4, 7, 1, 6, 1, 9, 7, 9, 8, 6, 1, 8, 1, 2, 1, 5, 5, 2, 5, 6, 5, 3, 3, 2, 1, 4, 8, 2, 5, 8, 8, 6, 2, 6, 4, 0, 1, 2, 4, 8, 0, 4, 5, 7, 7, 8, 9
OFFSET
0,1
LINKS
Jonathan M. Borwein, Armin Straub, Log-sine evaluations of Mahler measures, arXiv:1103.3893 [math.CA], (20-March-2011)
E. D. Krupnikov, K. S. Kölbig, Some special cases of the generalized hypergeometric function (q+1)Fq, J. Comp. Appl. Math. 78 (1997) 79-95, eq. 18.
FORMULA
-integral_(0..Pi/3) t*log(2*sin(t/2))^2 dt.
-(1/2)*sum_(k=1..infinity) 1/(Binomial(2*k, k)*k^4).
-17*Pi^4/6480.
EXAMPLE
-0.255548541292907628552389761683331310377371752536366...
MATHEMATICA
RealDigits[-17*Pi^4/6480, 10, 105] // First
CROSSREFS
Sequence in context: A246900 A277086 A229710 * A023398 A374357 A374359
KEYWORD
nonn,cons,easy
AUTHOR
STATUS
approved