login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A240876 Expansion of (1 + x)^11 / (1 - x)^12. 11
1, 23, 265, 2047, 11969, 56695, 227305, 795455, 2485825, 7059735, 18474633, 45046719, 103274625, 224298231, 464387817, 921406335, 1759885185, 3248227095, 5812626185, 10113604735, 17152640321, 28418229623, 46082942185, 73265596607, 114375683009 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

Also 11-dimensional centered hyperoctahedron numbers (see Deza in References) or Crystal ball sequence for 11-dimensional cubic lattice.

Sum_{n >= 0} 1/a(n) = 1.047847848425287358769594801715758965260...

REFERENCES

E. Deza and M. M. Deza, Figurate numbers, World Scientific Publishing (2012), page 230 (paragraph 3.6.6).

LINKS

Bruno Berselli, Table of n, a(n) for n = 0..1000

D. Bump, K. Choi, P. Kurlberg, and J. Vaaler, A local Riemann hypothesis, I pages 16 and 17.

OEIS Wiki, Centered orthoplex numbers, see Table of formulas and values (row 11).

Index entries for linear recurrences with constant coefficients, signature (12,-66,220,-495,792,-924,792,-495,220,-66,12,-1).

FORMULA

G.f.: (1 + x)^11 / (1 - x)^12.

a(n) = 12*a(n-1) - 66*a(n-2) + 220*a(n-3) - 495*a(n-4) + 792*a(n-5) - 924*a(n-6) + 792*a(n-7) - 495*a(n-8) + 220*a(n-9) - 66*a(n-10) + 12*a(n-11) - a(n-12), with initial values as shown.

a(n) = (2*n + 1)*(2*n*(n + 1)*(n^2 + n + 5)*(2*n^2 + 2*n + 51)*(n^4 + 2*n^3 + 68*n^2 + 67*n + 537)/155925 + 1).

a(n) = A008421(n) + 2*Sum_{i=0..n-1} A008421(i) for n > 0, a(0) = 1.

a(n) = Sum_{k = 0..min(11,n)} 2^k*binomial(11,k)*binomial(n,k). See Bump et al. - Tom Copeland, Sep 05 2014

MATHEMATICA

CoefficientList[Series[(1 + x)^11/(1 - x)^12, {x, 0, 30}], x]

LinearRecurrence[{12, -66, 220, -495, 792, -924, 792, -495, 220, -66, 12, -1}, {1, 23, 265, 2047, 11969, 56695, 227305, 795455, 2485825, 7059735, 18474633, 45046719}, 30] (* Harvey P. Dale, Apr 15 2018 *)

PROG

(PARI) Vec((1+x)^11/(1-x)^12+O(x^30))

(MAGMA) m:=30; R<x>:=PowerSeriesRing(Integers(), m); Coefficients(R!((1+x)^11/(1-x)^12));

(Maxima) makelist(coeff(taylor((1+x)^11/(1-x)^12, x, 0, n), x, n), n, 0, 30);

(Sage) m = 30; L.<x> = PowerSeriesRing(ZZ, m); f = (1+x)^11/(1-x)^12; print f.coefficients()

CROSSREFS

Cf. similar sequences with g.f. (1+x)^m/(1-x)^(m+1): A005408 (m=1), A001844 .. A001849 (m=2..7), A008417 (m=8), A008419 (m=9), A008421 (m=10), this sequence (m=11), A053805 (m=12).

Subsequence of the odd numbers, A005408.

Sequence in context: A125411 A140620 A002681 * A142220 A257930 A142027

Adjacent sequences:  A240873 A240874 A240875 * A240877 A240878 A240879

KEYWORD

nonn,easy

AUTHOR

Bruno Berselli, Apr 16 2014

EXTENSIONS

Edited by M. F. Hasler, May 07 2018

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified August 21 21:42 EDT 2018. Contains 313957 sequences. (Running on oeis4.)