login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A008417
Crystal ball sequence for 8-dimensional cubic lattice.
4
1, 17, 145, 833, 3649, 13073, 40081, 108545, 265729, 598417, 1256465, 2485825, 4673345, 8405905, 14546705, 24331777, 39490049, 62390545, 96220561, 145198913, 214828609, 312193553, 446304145, 628496897, 872893441, 1196924561, 1621925137, 2173806145, 2883810113, 3789356689, 4934985233
OFFSET
0,2
COMMENTS
This is row/column 8 of the Delannoy numbers array, A008288, which is the main entry for these numbers, listing many more properties. - Shel Kaphan, Jan 06 2023
LINKS
J. H. Conway and N. J. A. Sloane, Low-Dimensional Lattices VII: Coordination Sequences, Proc. Royal Soc. London, A453 (1997), 2369-2389 (pdf).
Index entries for linear recurrences with constant coefficients, signature (9, -36, 84, -126, 126, -84, 36, -9, 1).
FORMULA
G.f.: (1+x)^8/(1-x)^9.
First differences of A099196. - Alexander Adamchuk, May 23 2006
a(n) = (2*n^8 + 8*n^7 + 84*n^6 + 224*n^5 + 798*n^4 + 1232*n^3 + 1636*n^2 + 1056*n + 315)/315. - Alexander Adamchuk, May 23 2006
Sum_{n >= 1} (-1)^(n+1)/(n*a(n-1)*a(n)) = log(2) - (1 - 1/2 + 1/3 - 1/4 + 1/5 - 1/6 + 1/7 - 1/8). - Peter Bala, Mar 23 2024
MATHEMATICA
CoefficientList[Series[-(z + 1)^8/(z - 1)^9, {z, 0, 200}], z] (* Vladimir Joseph Stephan Orlovsky, Jun 19 2011 *)
LinearRecurrence[{9, -36, 84, -126, 126, -84, 36, -9, 1}, {1, 17, 145, 833, 3649, 13073, 40081, 108545, 265729}, 40] (* Harvey P. Dale, May 26 2024 *)
CROSSREFS
Partial sums of A008416.
Cf. A240876.
Row/Column 8 of A008288.
Sequence in context: A304207 A163038 A216422 * A241796 A181908 A233328
KEYWORD
nonn,easy
AUTHOR
EXTENSIONS
More terms from Alexander Adamchuk, May 23 2006
STATUS
approved