login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A240776 Define a square array B(m,n) (m>=0, n>=0) by B(n, n) = A212196(n)/A181131(n), B(n, n+1) = -A212196(n)/A181131(n), B(m, n) = B(m, n-1) + B(m+1, n-1); a(n) = numerator of B(0,n). 0
1, -1, -4, -1, -8, -1, -8, -3, -8, 1, 104, -41, -920, 1767, 20168, -8317, -2022392, 869807, 291391192, -129169263, -2759924456, 250158593, 146772324808, -67632514765, -10164962436952 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

The array B(m,n) begins:

1,          -1,  -4/3,     -1,   -8/15,   -1/5, -8/105,...

-2,       -1/3,   1/3,   7/15,     1/3, 13/105,...

5/3,       2/3,  2/15,  -2/15, -22/105,...

-1,      -8/15, -4/15, -8/105,...

7/15,     4/15,  4/21,...

-1/5,   -8/105,...

13/105,...

etc.

B(0, n) = 1, -1, -4/3, -1, -8/15, -1/5, -8/105, -3/35, -8/105, 1/35, 104/1155, ... = a(n)/b(n).

The main diagonal is A212196(n)/A181131(n).

The first upper diagonal is -A212196(n)/A181131(n).

LINKS

Table of n, a(n) for n=0..24.

MATHEMATICA

max = 12; t[0] = Table[BernoulliB[n], {n, 0, 2*max}]; t[n_] := t[n] = Differences[t[0], n]; B1[1, 1] = -1/3; B1[n_, n_] := t[n][[n+1]]; B1[m_, n_] /; n == m+1 := B1[m, n] = -B1[m, m]; B1[m_?NonNegative, n_?NonNegative] := B1[m, n] = B1[m, n-1] + B1[m+1, n-1]; B1[_, _] = 0; Table[B1[0, n] // Numerator, {n, 0, 2*max}] (* Jean-François Alcover, Apr 14 2014 *)

CROSSREFS

Sequence in context: A085994 A179836 A040019 * A019768 A319296 A211779

Adjacent sequences:  A240773 A240774 A240775 * A240777 A240778 A240779

KEYWORD

sign,frac

AUTHOR

Paul Curtz, Apr 12 2014

EXTENSIONS

More terms from Jean-François Alcover, Apr 14 2014

Edited by N. J. A. Sloane, May 21 2014

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 13 23:48 EST 2019. Contains 329106 sequences. (Running on oeis4.)