The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 56th year, we are closing in on 350,000 sequences, and we’ve crossed 9,700 citations (which often say “discovered thanks to the OEIS”).

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A240388 A sequence related to the Stern sequence s(n) (A002487), defined by w(n) = s(3n)/2. 2
 0, 1, 1, 2, 1, 2, 2, 4, 1, 4, 2, 3, 2, 5, 4, 6, 1, 6, 4, 5, 2, 3, 3, 7, 2, 9, 5, 7, 4, 9, 6, 8, 1, 8, 6, 9, 4, 7, 5, 9, 2, 7, 3, 4, 3, 8, 7, 11, 2, 13, 9, 12, 5, 8, 7, 15, 4, 17, 9, 11, 6, 13, 8, 10, 1, 10, 8, 13, 6, 11, 9, 17, 4, 15, 7, 8, 5, 12, 9, 13, 2, 11, 7, 8, 3, 4, 4, 10, 3, 14, 8, 12, 7, 16, 11, 15, 2, 17, 13, 20, 9, 16, 12, 22, 5, 18, 8, 10, 7, 18, 15, 23, 4, 25, 17, 22, 9, 14, 11, 23, 6, 25, 13, 15, 8, 17, 10, 12, 1 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,4 COMMENTS The even terms in the Stern sequence, divided by 2. REFERENCES J. Lansing, On the Stern sequence and a related sequence, PhD dissertation, University of Illinois, 2014. J. Lansing, Largest Values for the Stern Sequence, J. Integer Seqs., 17 (2014), #14.7.5. LINKS J. Lansing, On the Stern sequence and a related sequence, Joint Mathematics Meetings, Baltimore, 2014. Jennifer Lansing, Dissertation: On the Stern sequence and a related sequence. FORMULA w(0)=0, w(1)=1, and w(3)=2.  For n >= 1, w(n) satisfies the recurrences w(2n)=w(n), w(8n +/- 1)=w(4n +/- 1) + 2w(n), w(8n +/- 3)=w(4n +/- 1) + w(2n +/- 1) -w(n). EXAMPLE w(7)=w(8-1)=w(3)+2w(1)=2+2=4. w(11)=w(8+3)=w(4+1)+w(2+1)-w(1)=w(5)+w(3)-w(1)=2+2-1=3. Comment from N. J. A. Sloane, Jul 01 2014: May be arranged as a triangle: 0 1 1 2 1 2 2 4 1 4 2 3 2 5 4 6 1 6 4 5 2 3 3 7 2 9 5 7 4 9 6 8 1 8 6 9 4 7 5 9 2 7 3 ... MAPLE A240388 := proc(n)     option remember;     local nloc;     if n <=1  then         n;     elif n = 3 then         2;     elif type(n, 'even') then         procname(n/2) ;     elif modp(n, 8) = 1 then         nloc := (n-1)/8 ;         procname(4*nloc+1)+2*procname(nloc) ;     elif modp(n, 8) = 7 then         nloc := (n+1)/8 ;         procname(4*nloc-1)+2*procname(nloc) ;     elif modp(n, 8) = 3 then         nloc := (n-3)/8 ;         procname(4*nloc+1)+procname(2*nloc+1)-procname(nloc) ;     else         nloc := (n+3)/8 ;         procname(4*nloc-1)+procname(2*nloc-1)-procname(nloc) ;     end if; end proc: # R. J. Mathar, Jul 05 2014 MATHEMATICA Clear[s]; s[0] = 0; s[1] = 1; s[n_?EvenQ] := s[n] = s[n/2]; s[n_?OddQ] := s[n] = s[(n + 1)/2] + s[(n - 1)/2] (* For the Stern sequence *) Clear[w]; w[n_] = 1/2 s[3 n] PROG a(n)=my(a=1, b=0); n*=3; while(n>0, if(n%2, b+=a, a+=b); n>>=1); b/2 \\ Charles R Greathouse IV, May 27 2014 CROSSREFS Cf. A002487. Sequence in context: A062790 A046640 A347101 * A049823 A143775 A244329 Adjacent sequences:  A240385 A240386 A240387 * A240389 A240390 A240391 KEYWORD nonn,easy AUTHOR Jennifer Lansing, Apr 04 2014 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 1 16:44 EST 2021. Contains 349430 sequences. (Running on oeis4.)