login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A240388
A sequence related to the Stern sequence s(n) (A002487), defined by w(n) = s(3n)/2.
2
0, 1, 1, 2, 1, 2, 2, 4, 1, 4, 2, 3, 2, 5, 4, 6, 1, 6, 4, 5, 2, 3, 3, 7, 2, 9, 5, 7, 4, 9, 6, 8, 1, 8, 6, 9, 4, 7, 5, 9, 2, 7, 3, 4, 3, 8, 7, 11, 2, 13, 9, 12, 5, 8, 7, 15, 4, 17, 9, 11, 6, 13, 8, 10, 1, 10, 8, 13, 6, 11, 9, 17, 4, 15, 7, 8, 5, 12, 9, 13, 2, 11, 7, 8, 3, 4, 4, 10, 3, 14, 8, 12, 7, 16, 11, 15, 2, 17, 13, 20, 9, 16, 12, 22, 5, 18, 8, 10, 7, 18, 15, 23, 4, 25, 17, 22, 9, 14, 11, 23, 6, 25, 13, 15, 8, 17, 10, 12, 1
OFFSET
0,4
COMMENTS
The even terms in the Stern sequence, divided by 2.
LINKS
Jennifer Lansing, On the Stern sequence and a related sequence, Joint Mathematics Meetings, Baltimore, 2014.
Jennifer Lansing, Dissertation: On the Stern sequence and a related sequence, PhD dissertation, University of Illinois, 2014.
Jennifer Lansing, Largest Values for the Stern Sequence, J. Integer Seqs., 17 (2014), #14.7.5.
FORMULA
w(0)=0, w(1)=1, and w(3)=2. For n >= 1, w(n) satisfies the recurrences w(2n)=w(n), w(8n +/- 1)=w(4n +/- 1) + 2w(n), w(8n +/- 3)=w(4n +/- 1) + w(2n +/- 1) -w(n).
a(n) = A002487(3*n) / 2. - Joerg Arndt, Jun 20 2022
EXAMPLE
w(7) = w(8-1) = w(3)+2w(1) = 2+2 = 4.
w(11) = w(8+3) = w(4+1)+w(2+1)-w(1)=w(5)+w(3)-w(1) = 2+2-1 = 3.
Comment from N. J. A. Sloane, Jul 01 2014: (Start)
May be arranged as a triangle:
0
1
1
2 1 2
2 4 1 4 2
3 2 5 4 6 1 6 4 5 2 3
3 7 2 9 5 7 4 9 6 8 1 8 6 9 4 7 5 9 2 7 3
... (End)
MAPLE
A240388 := proc(n)
option remember;
local nloc;
if n <=1 then
n;
elif n = 3 then
2;
elif type(n, 'even') then
procname(n/2) ;
elif modp(n, 8) = 1 then
nloc := (n-1)/8 ;
procname(4*nloc+1)+2*procname(nloc) ;
elif modp(n, 8) = 7 then
nloc := (n+1)/8 ;
procname(4*nloc-1)+2*procname(nloc) ;
elif modp(n, 8) = 3 then
nloc := (n-3)/8 ;
procname(4*nloc+1)+procname(2*nloc+1)-procname(nloc) ;
else
nloc := (n+3)/8 ;
procname(4*nloc-1)+procname(2*nloc-1)-procname(nloc) ;
end if;
end proc: # R. J. Mathar, Jul 05 2014
# second Maple program:
b:= proc(n) option remember; `if`(n<2, n,
(q-> b(q)+(n-2*q)*b(n-q))(iquo(n, 2)))
end:
a:= n-> b(3*n)/2:
seq(a(n), n=0..128); # Alois P. Heinz, Jun 20 2022
MATHEMATICA
Clear[s]; s[0] = 0; s[1] = 1; s[n_?EvenQ] := s[n] = s[n/2];
s[n_?OddQ] :=
s[n] = s[(n + 1)/2] + s[(n - 1)/2] (* For the Stern sequence *)
Clear[w]; w[n_] = 1/2 s[3 n]
PROG
(PARI) a(n)=my(a=1, b=0); n*=3; while(n>0, if(n%2, b+=a, a+=b); n>>=1); b/2 \\ Charles R Greathouse IV, May 27 2014
(Python)
from functools import reduce
def A240388(n): return sum(reduce(lambda x, y:(x[0], x[0]+x[1]) if int(y) else (x[0]+x[1], x[1]), bin(3*n)[-1:2:-1], (1, 0)))//2 # Chai Wah Wu, Jun 20 2022
CROSSREFS
Cf. A002487.
Sequence in context: A062790 A046640 A347101 * A049823 A143775 A244329
KEYWORD
nonn,look,easy
AUTHOR
Jennifer Lansing, Apr 04 2014
STATUS
approved