This site is supported by donations to The OEIS Foundation.

 Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing. Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A240339 Primes p which are floor of Root-Mean-Cube (RMC) of prime(n) and prime(n+1). 1
 59, 97, 1321, 1621, 2539, 3511, 4339, 4889, 5591, 6491, 6917, 9419, 10289, 11689, 16381, 18719, 19441, 23053, 23567, 28499, 41051, 47143, 64661, 65203, 67939, 71023, 82493, 89107, 94999, 98927, 106087, 114941, 117281, 120823, 135647, 139361, 144289, 154799 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 LINKS K. D. Bajpai, Table of n, a(n) for n = 1..1700 EXAMPLE 13 and 17 are consecutive primes: sqrt((13^3 + 17^3)/2) = 59.62382073: floor(59.62382073)= 59, which is prime and appears in the sequence. 19 and 23 are consecutive primes: sqrt((19^3 + 23^3)/2) = 97.53460923: floor(97.53460923)= 97, which is prime and appears in the sequence. MAPLE KD := proc() local a, b, d; a:=ithprime(n); b:=ithprime(n+1); d:=floor(evalf(sqrt(((a^3+b^3)/2)))); if isprime(d) then  RETURN (d); fi; end: seq(KD(), n=1..1000); MATHEMATICA Select[Floor[Sqrt[Mean[#]]]&/@(Partition[Prime[Range[600]], 2, 1]^3), PrimeQ] (* Harvey P. Dale, Sep 24 2014 *) CROSSREFS Cf. A000040, A075471, A088165. Sequence in context: A044034 A142152 A112804 * A199977 A134573 A106869 Adjacent sequences:  A240336 A240337 A240338 * A240340 A240341 A240342 KEYWORD nonn AUTHOR K. D. Bajpai, Apr 04 2014 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 10 23:29 EST 2019. Contains 329910 sequences. (Running on oeis4.)