

A240339


Primes p which are floor of RootMeanCube (RMC) of prime(n) and prime(n+1).


1



59, 97, 1321, 1621, 2539, 3511, 4339, 4889, 5591, 6491, 6917, 9419, 10289, 11689, 16381, 18719, 19441, 23053, 23567, 28499, 41051, 47143, 64661, 65203, 67939, 71023, 82493, 89107, 94999, 98927, 106087, 114941, 117281, 120823, 135647, 139361, 144289, 154799
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


LINKS

K. D. Bajpai, Table of n, a(n) for n = 1..1700


EXAMPLE

13 and 17 are consecutive primes: sqrt((13^3 + 17^3)/2) = 59.62382073: floor(59.62382073)= 59, which is prime and appears in the sequence.
19 and 23 are consecutive primes: sqrt((19^3 + 23^3)/2) = 97.53460923: floor(97.53460923)= 97, which is prime and appears in the sequence.


MAPLE

KD := proc() local a, b, d; a:=ithprime(n); b:=ithprime(n+1); d:=floor(evalf(sqrt(((a^3+b^3)/2)))); if isprime(d) then RETURN (d); fi; end: seq(KD(), n=1..1000);


MATHEMATICA

Select[Floor[Sqrt[Mean[#]]]&/@(Partition[Prime[Range[600]], 2, 1]^3), PrimeQ] (* Harvey P. Dale, Sep 24 2014 *)


CROSSREFS

Cf. A000040, A075471, A088165.
Sequence in context: A044034 A142152 A112804 * A199977 A134573 A106869
Adjacent sequences: A240336 A240337 A240338 * A240340 A240341 A240342


KEYWORD

nonn


AUTHOR

K. D. Bajpai, Apr 04 2014


STATUS

approved



