login
A240338
T(n,k)=Number of nXk 0..3 arrays with no element equal to two plus the sum of elements to its left or two plus the sum of the elements above it or one plus the sum of the elements diagonally to its northwest, modulo 4
6
2, 4, 4, 7, 15, 7, 11, 48, 48, 11, 16, 125, 316, 125, 16, 22, 284, 1543, 1543, 284, 22, 29, 582, 6271, 14456, 6271, 582, 29, 37, 1097, 22116, 110327, 110327, 22116, 1097, 37, 46, 1932, 69596, 716770, 1607848, 716770, 69596, 1932, 46, 56, 3219, 199504, 4106515
OFFSET
1,1
COMMENTS
Table starts
..2....4.......7........11...........16............22.............29
..4...15......48.......125..........284...........582...........1097
..7...48.....316......1543.........6271.........22116..........69596
.11..125....1543.....14456.......110327........716770........4106515
.16..284....6271....110327......1607848......19629542......208224462
.22..582...22116....716770.....19629542.....455506837.....9073358239
.29.1097...69596...4106515....208224462....9073358239...342013040533
.37.1932..199504..21225132...1979743527..160455447637.11361329151015
.46.3219..528924.100450928..17168302936.2579449716281
.56.5123.1310622.439636230.137234695613
LINKS
FORMULA
Empirical for column k:
k=1: a(n) = (1/2)*n^2 + (1/2)*n + 1
k=2: [polynomial of degree 5] for n>2
k=3: [polynomial of degree 13] for n>12
k=4: [polynomial of degree 30] for n>35
k=5: [polynomial of degree 69] for n>88
EXAMPLE
Some solutions for n=4 k=4
..0..0..3..3....0..0..0..0....0..0..0..0....3..0..0..3....0..3..3..3
..0..0..3..3....0..3..0..3....0..0..3..3....0..3..3..2....0..0..3..2
..3..3..2..1....0..0..3..2....0..3..2..2....3..0..2..2....3..3..3..0
..3..2..1..2....0..0..0..0....0..3..2..0....3..3..2..0....3..2..2..2
CROSSREFS
Column 1 is A000124
Sequence in context: A268995 A205744 A237859 * A227103 A223644 A223637
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, Apr 04 2014
STATUS
approved