OFFSET
0,1
REFERENCES
B. C. Berndt, Ramanujan's Notebooks Part I, Springer-Verlag,
LINKS
Eric Weisstein's World of Mathematics, Harmonic Number
FORMULA
Equals zeta(3) - Pi^2/12*log(2).
Let a(p,q) = Sum_{n >= 1} (-1)^(n+1)*H(n,p)/n^q, then A076788 is a(1,1), A233090 is a(1,2) and this sequence is a(2,1).
Equals Sum_{n >= 1} (1/2)^n * H(n,1)/n^2, where H(n,1) = Sum_{k = 1..n} 1/k. See Berndt, p. 258. - Peter Bala, Oct 28 2021
EXAMPLE
0.631966197838...
MATHEMATICA
Zeta[3] - Pi^2/12*Log[2] // RealDigits[#, 10, 100]& // First
PROG
(PARI) zeta(3)-log(2)*Pi^2/12 \\ Charles R Greathouse IV, Apr 03 2014
CROSSREFS
KEYWORD
nonn,cons
AUTHOR
Jean-François Alcover, Apr 03 2014
STATUS
approved