

A240264


Decimal expansion of sum_(n=1..infinity) (1)^(n+1)*H(n,2)/n^2, where H(n,2) is the nth harmonic number of order 2.


1



6, 3, 1, 9, 6, 6, 1, 9, 7, 8, 3, 8, 1, 6, 7, 9, 0, 6, 6, 6, 2, 4, 4, 8, 2, 3, 2, 0, 1, 5, 2, 7, 5, 3, 1, 8, 1, 5, 6, 6, 7, 1, 3, 7, 1, 6, 5, 8, 1, 7, 2, 7, 5, 5, 5, 1, 5, 2, 6, 0, 5, 6, 7, 9, 6, 5, 4, 1, 1, 7, 6, 9, 2, 0, 9, 4, 1, 5, 6, 9, 6, 2, 9, 4, 2, 9, 3, 3, 6, 4, 7, 8, 5, 5, 6, 9, 1, 4, 3, 0
(list;
constant;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,1


LINKS

Table of n, a(n) for n=0..99.
Eric Weisstein's MathWorld, Harmonic Number


FORMULA

Equals zeta(3)  Pi^2/12*log(2).
Let a(p,q) = sum[(1)^(n+1)*H(n,p)/n^q, {n, 1, infinity}), then A076788 is a(1,1), A233090 is a(1,2) and this sequence is a(2,1).


EXAMPLE

0.631966197838...


MATHEMATICA

Zeta[3]  Pi^2/12*Log[2] // RealDigits[#, 10, 100]& // First


PROG

(PARI) zeta(3)log(2)*Pi^2/12 \\ Charles R Greathouse IV, Apr 03 2014


CROSSREFS

Cf. A076788, A233090.
Sequence in context: A195494 A154969 A192741 * A119743 A272643 A243424
Adjacent sequences: A240261 A240262 A240263 * A240265 A240266 A240267


KEYWORD

nonn,cons


AUTHOR

JeanFrançois Alcover, Apr 03 2014


STATUS

approved



