login
This site is supported by donations to The OEIS Foundation.

 

Logo

Invitation: celebrating 50 years of OEIS, 250000 sequences, and Sloane's 75th, there will be a conference at DIMACS, Rutgers, Oct 9-10 2014.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A119743 Triangle read by rows: row n gives number of matchings of size 0<=k<=n (edges) in the complete graph on 2*n >= 2 vertices. 1
1, 1, 1, 6, 3, 1, 15, 45, 15, 1, 28, 210, 420, 105, 1, 45, 630, 3150, 4725, 945, 1, 66, 1485, 13860, 51975, 62370, 10395, 1, 91, 3003, 45045, 315315, 945945, 945945, 135135, 1, 120, 5460, 120120, 1351350, 7567560, 18918900, 16216200, 2027025, 1, 153, 9180 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

1,4

REFERENCES

The special case m(n,n) appears in: Flajolet, P. and Noy, M., "Analytic Combinatorics of Chord Diagrams", INRIA Research Report, ISRN INRIA/RR-3914-FR+ENG, March 2000.

LINKS

Table of n, a(n) for n=1..47.

T. Copeland, Infinitesimal Generators, the Pascal Pyramid, and the Witt and Virasoro Algebras

FORMULA

T(n,k)=(2*n)! / ((2*n-2*k)!*k!*2^k).

EXAMPLE

For example, T(3,2) is the number of matchings composed of any two edges of the complete graph on 6 vertices. Then T(3,2) = a(3*(3+1)/2+2) = a(8) = 45. Similarly, T(2,2)=a(5)=3 since the only matchings of size 2 on the K_4 are {{0,1},{2,3}}, {{0,3}{1,2}} and {{0,2},{1,3}}.

CROSSREFS

Sequence in context: A154969 A192741 A240264 * A243424 A182227 A108451

Adjacent sequences:  A119740 A119741 A119742 * A119744 A119745 A119746

KEYWORD

nonn,tabl

AUTHOR

Swapnil P. Bhatia (sbhatia(AT)cs.unh.edu), Jul 29 2006

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .

Last modified October 2 06:43 EDT 2014. Contains 247537 sequences.