OFFSET
1,2
COMMENTS
The contraharmonic mean of a set {x(1),..,x(k)} is defined as (x(1)^2 + ... + x(k)^2)/(x(1) + ... + x(k)); if the set is a partition of n, this mean is (x(1)^2 + ... + x(k)^2)/n, which is the square of the root mean square of the partition, discussed at A240090.
EXAMPLE
a(10) counts these 8 partitions: [10], [6,1,1,1,1], [5,5], [5,1,1,1,1,1], [4,3,2,1], [3,2,2,1,1,1], [2,2,2,2,2], [1,1,1,1,1,1,1,1,1,1]; e.g., [4,3,2,1] has contraharmonic mean (16 + 9 + 4 + 1)/10 = 3.
MATHEMATICA
z = 15; ColumnForm[t = Map[Select[IntegerPartitions[#], IntegerQ[RootMeanSquare[#]] &] &, Range[z]]] (* shows the partitions *)
t1 = Map[Length, t] (* A240089 *)
ColumnForm[u = Map[Select[IntegerPartitions[#], IntegerQ[ContraharmonicMean[#]] &] &, Range[z]]] (* shows the partitions *)
t2 = Map[Length, u] (* A240090 *)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling and Peter J. C. Moses, Apr 01 2014
STATUS
approved