OFFSET
0,6
COMMENTS
Also for n>0 the number of partitions of n such that (number of distinct parts) = multiplicity of the greatest part (by conjugation of the partition table). - Joerg Arndt, Apr 28 2014
LINKS
Alois P. Heinz, Table of n, a(n) for n = 0..1000
EXAMPLE
a(8) counts these 4 partitions : 62, 422, 332, 11111111.
MAPLE
b:= proc(n, i, d) option remember; `if`(min(i, n)<d+1, 0,
`if`(irem(n, i)=0 and i=d+1, 1, b(n, i-1, d)+
add(b(n-i*j, i-1, d+1), j=1..n/i)))
end:
a:= n-> b(n$2, 0):
seq(a(n), n=0..60); # Alois P. Heinz, Apr 02 2014
MATHEMATICA
z = 50; d[p_] := d[p] = Length[DeleteDuplicates[p]]; f[n_] := f[n] = IntegerPartitions[n];
Table[Count[f[n], p_ /; d[p] < Min[p]], {n, 0, z}] (*A239948*)
Table[Count[f[n], p_ /; d[p] <= Min[p]], {n, 0, z}] (*A239949*)
Table[Count[f[n], p_ /; d[p] == Min[p]], {n, 0, z}] (*A239950*)
Table[Count[f[n], p_ /; d[p] > Min[p]], {n, 0, z}] (*A239951*)
Table[Count[f[n], p_ /; d[p] >= Min[p]], {n, 0, z}] (*A239952*)
b[n_, i_, d_] := b[n, i, d] = If[Min[i, n]<d+1, 0, If[Mod[n, i]==0 && i == d+1, 1, b[n, i-1, d] + Sum[b[n-i*j, i-1, d+1], {j, 1, n/i}]]]; a[n_] := b[n, n, 0]; Table[a[n], {n, 0, 60}] (* Jean-François Alcover, Nov 17 2015, after Alois P. Heinz *)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Mar 30 2014
STATUS
approved