login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A239950
Number of partitions of n such that (number of distinct parts) = least part.
6
0, 1, 1, 1, 1, 2, 2, 3, 4, 4, 6, 6, 9, 8, 14, 11, 19, 18, 25, 24, 37, 31, 50, 46, 61, 64, 86, 79, 112, 115, 136, 149, 190, 184, 239, 255, 293, 329, 382, 408, 489, 531, 595, 675, 772, 827, 952, 1066, 1176, 1320, 1468, 1627, 1827, 2030, 2219, 2493, 2769, 3053
OFFSET
0,6
COMMENTS
Also for n>0 the number of partitions of n such that (number of distinct parts) = multiplicity of the greatest part (by conjugation of the partition table). - Joerg Arndt, Apr 28 2014
LINKS
FORMULA
A239948(n) + a(n) + A239951(n) = A000041(n) for n >= 0.
EXAMPLE
a(8) counts these 4 partitions : 62, 422, 332, 11111111.
MAPLE
b:= proc(n, i, d) option remember; `if`(min(i, n)<d+1, 0,
`if`(irem(n, i)=0 and i=d+1, 1, b(n, i-1, d)+
add(b(n-i*j, i-1, d+1), j=1..n/i)))
end:
a:= n-> b(n$2, 0):
seq(a(n), n=0..60); # Alois P. Heinz, Apr 02 2014
MATHEMATICA
z = 50; d[p_] := d[p] = Length[DeleteDuplicates[p]]; f[n_] := f[n] = IntegerPartitions[n];
Table[Count[f[n], p_ /; d[p] < Min[p]], {n, 0, z}] (*A239948*)
Table[Count[f[n], p_ /; d[p] <= Min[p]], {n, 0, z}] (*A239949*)
Table[Count[f[n], p_ /; d[p] == Min[p]], {n, 0, z}] (*A239950*)
Table[Count[f[n], p_ /; d[p] > Min[p]], {n, 0, z}] (*A239951*)
Table[Count[f[n], p_ /; d[p] >= Min[p]], {n, 0, z}] (*A239952*)
b[n_, i_, d_] := b[n, i, d] = If[Min[i, n]<d+1, 0, If[Mod[n, i]==0 && i == d+1, 1, b[n, i-1, d] + Sum[b[n-i*j, i-1, d+1], {j, 1, n/i}]]]; a[n_] := b[n, n, 0]; Table[a[n], {n, 0, 60}] (* Jean-François Alcover, Nov 17 2015, after Alois P. Heinz *)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Mar 30 2014
STATUS
approved