

A239472


Least number k such that k^n(k1)^n...3^n2^n is prime. a(n) = 0 if no such number exists.


6



2, 3, 3, 7, 3, 0, 0, 0, 0, 7, 7, 0, 4, 0, 8, 11, 3, 16, 15, 0, 4, 7, 0, 23, 0, 19, 12, 11, 3, 0, 3, 7, 12, 0, 12, 0, 0, 0, 0, 0, 16, 0, 0, 0, 59, 11, 44, 32, 16, 0, 0, 0, 3, 0, 23, 0, 20, 75, 3, 0, 28, 0, 0, 0, 36, 0, 60, 0, 0, 0, 36, 0, 0, 0, 0, 19, 0, 0, 0, 0, 0, 91, 75, 0, 0, 0, 32, 108, 7, 0, 60, 0, 40, 39, 0, 0, 0, 0, 80
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

a(n) = 0 for n = {6, 7, 8, 9, 12, 14, 20, 23, 25, ...} because for k large enough, k^n(k1)^n...3^n2^n < 0. Thus, no number will be prime.
See A240083 for the nvalues with nonzero entries.


LINKS

Table of n, a(n) for n=1..99.


EXAMPLE

2^2 = 4 is not prime. 3^22^2 = 5 is prime. Thus, a(2) = 3.
2^3 = 8 is not prime. 3^32^3 = 19 is prime. Thus, a(3) = 3.


PROG

(Python)
import sympy
from sympy import isprime
def Lep(n):
..for k in range(2*10**3):
....num = k**n
....for i in range(2, k):
......num = i**n
......if num < 0:
........return None
....if isprime(num):
......return k
n = 1
while n < 100:
..if Lep(n) == None:
....print(0)
..else:
....print(Lep(n))
..n += 1
(PARI) a(n)=k=1; while((s=k^nsum(i=2, k1, i^n))>0, if(isprime(s), return(k)); k++)
for(n=1, 100, print1(a(n), ", ")) \\ Derek Orr, Mar 12 2015


CROSSREFS

Cf. A240083.
Sequence in context: A111003 A289277 A140182 * A234943 A209494 A082910
Adjacent sequences: A239469 A239470 A239471 * A239473 A239474 A239475


KEYWORD

nonn


AUTHOR

Derek Orr, Mar 31 2014


STATUS

approved



