This site is supported by donations to The OEIS Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A239470 Number of 4-separable partitions of n; see Comments. 5
 0, 0, 0, 0, 1, 2, 2, 2, 3, 5, 6, 7, 8, 11, 13, 17, 19, 23, 27, 34, 40, 47, 55, 66, 77, 92, 106, 125, 145, 171, 198, 231, 266, 310, 358, 416, 477, 552, 633, 731, 838, 963, 1100, 1263, 1442, 1651, 1880, 2147, 2442, 2785, 3163, 3597, 4078, 4631, 5244, 5946 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,6 COMMENTS Suppose that p is a partition of n into 2 or more parts and that h is a part of p.  Then p is (h,0)-separable if there is an ordering x, h, x, h, ..., h, x of the parts of p, where each x represents any part of p except h.  Here, the number of h's on the ends of the ordering is 0.  Similarly, p is (h,1)-separable if there is an ordering x, h, x, h, ... , x, h, where the number of h's on the ends is 1; next, p is (h,2)-separable if there is an ordering h, x, h, ... , x, h.  Finally, p is h-separable if it is (h,i)-separable for i = 0,1,2. LINKS EXAMPLE (4,0)-separable partitions of 7:  241 (4,1)-separable partitions of 7:  43 (4,2)-separable partitions of 7:  (none) 4-separable partitions of 7:  241, 43, so that a(7) = 2. MATHEMATICA z = 55; t1 = -1 + Table[Count[IntegerPartitions[n], p_ /; Length[p] - 1 <= 2 Count[p, 1] <= Length[p] + 1], {n, 1, z}] (* A239467 *) t2 = -1 + Table[Count[IntegerPartitions[n], p_ /; Length[p] - 1 <= 2 Count[p, 2] <= Length[p] + 1], {n, 1, z}] (* A239468 *) t3 = -1 + Table[Count[IntegerPartitions[n], p_ /; Length[p] - 1 <= 2 Count[p, 3] <= Length[p] + 1], {n, 1, z}] (* A239469 *) t4 = -1 + Table[Count[IntegerPartitions[n], p_ /; Length[p] - 1 <= 2 Count[p, 4] <= Length[p] + 1], {n, 1, z}] (* A239470 *) t5 = -1 + Table[Count[IntegerPartitions[n], p_ /; Length[p] - 1 <= 2 Count[p, 5] <= Length[p] + 1], {n, 1, z}] (* A239472 *) CROSSREFS Cf. A239467, A239468, A239469, A239471. Sequence in context: A077018 A007918 A278167 * A320786 A126111 A296103 Adjacent sequences:  A239467 A239468 A239469 * A239471 A239472 A239473 KEYWORD nonn,easy AUTHOR Clark Kimberling, Mar 20 2014 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 15 18:26 EDT 2019. Contains 328037 sequences. (Running on oeis4.)