OFFSET
0,4
COMMENTS
The partitions are represented as weakly increasing lists of parts.
Partitions with subdiagonal growth (A238876) with first part = 1.
LINKS
Andrew Howroyd, Table of n, a(n) for n = 0..1000
FORMULA
G.f.: Sum_{n>=0} x^n * P(n) where P(n) is the row polynomial of the n-th row of A129176. This works because A129176(j,k) is also the number of subdiagonal partitions of j+k with j parts. - John Tyler Rascoe, Jan 20 2024
EXAMPLE
The a(11) = 26 such partitions of 11 are:
01: [ 1 1 1 1 1 1 1 1 1 1 1 ]
02: [ 1 1 1 1 1 1 1 1 1 2 ]
03: [ 1 1 1 1 1 1 1 1 3 ]
04: [ 1 1 1 1 1 1 1 2 2 ]
05: [ 1 1 1 1 1 1 1 4 ]
06: [ 1 1 1 1 1 1 2 3 ]
07: [ 1 1 1 1 1 1 5 ]
08: [ 1 1 1 1 1 2 2 2 ]
09: [ 1 1 1 1 1 2 4 ]
10: [ 1 1 1 1 1 3 3 ]
11: [ 1 1 1 1 1 6 ]
12: [ 1 1 1 1 2 2 3 ]
13: [ 1 1 1 1 2 5 ]
14: [ 1 1 1 1 3 4 ]
15: [ 1 1 1 2 2 2 2 ]
16: [ 1 1 1 2 2 4 ]
17: [ 1 1 1 2 3 3 ]
18: [ 1 1 1 3 5 ]
19: [ 1 1 1 4 4 ]
20: [ 1 1 2 2 2 3 ]
21: [ 1 1 2 2 5 ]
22: [ 1 1 2 3 4 ]
23: [ 1 1 3 3 3 ]
24: [ 1 2 2 2 2 2 ]
25: [ 1 2 2 2 4 ]
26: [ 1 2 2 3 3 ]
PROG
(PARI) \\ here b: nr parts; k: max part, b+w-1: partition sum.
seq(n)={my(M=matrix(n, 1), v=vector(n+1)); M[1, 1]=v[1]=v[2]=1; for(b=2, n, M=matrix(n-b+1, b, w, k, if(w>=k, sum(j=1, min(b-1, k), M[w+1-k, j]))); v+=concat(vector(b), vecsum(Vec(M))~)); v} \\ Andrew Howroyd, Jan 19 2024
(PARI)
N=55;
VP=vector(N+1); VP[1] =VP[2] = 1; \\ one-based; memoization
P(n) = VP[n+1];
for (n=2, N, VP[n+1] = sum( i=0, n-1, P(i) * P(n-1 -i) * x^((i+1)*(n-1-i)) ) );
x='x+O('x^N);
A(x) = sum(n=0, N, x^n * P(n) );
Vec(A(x)) \\ Joerg Arndt, Jan 23 2024
CROSSREFS
Cf. A219282 (superdiagonal compositions), A238873 (superdiagonal partitions), A238394 (strictly superdiagonal partitions), A238874 (strictly superdiagonal compositions), A025147 (strictly superdiagonal partitions into distinct parts).
Cf. A238859 (compositions of n with subdiagonal growth), A238876 (partitions with subdiagonal growth), A001227 (partitions into distinct parts with subdiagonal growth).
KEYWORD
nonn
AUTHOR
Joerg Arndt, Mar 24 2014
STATUS
approved