login
A238875
Subdiagonal partitions: number of partitions (p1, p2, p3, ...) of n with pi <= i.
10
1, 1, 1, 2, 2, 4, 5, 7, 10, 15, 18, 26, 35, 47, 61, 80, 103, 138, 175, 224, 283, 362, 455, 577, 721, 898, 1111, 1380, 1701, 2106, 2577, 3156, 3844, 4680, 5671, 6879, 8312, 10034, 12060, 14478, 17319, 20715, 24703, 29442, 35004, 41578, 49247, 58278, 68796, 81132, 95502, 112320, 131877, 154705, 181158, 211908, 247475
OFFSET
0,4
COMMENTS
The partitions are represented as weakly increasing lists of parts.
Partitions with subdiagonal growth (A238876) with first part = 1.
LINKS
FORMULA
G.f.: Sum_{n>=0} x^n * P(n) where P(n) is the row polynomial of the n-th row of A129176. This works because A129176(j,k) is also the number of subdiagonal partitions of j+k with j parts. - John Tyler Rascoe, Jan 20 2024
EXAMPLE
The a(11) = 26 such partitions of 11 are:
01: [ 1 1 1 1 1 1 1 1 1 1 1 ]
02: [ 1 1 1 1 1 1 1 1 1 2 ]
03: [ 1 1 1 1 1 1 1 1 3 ]
04: [ 1 1 1 1 1 1 1 2 2 ]
05: [ 1 1 1 1 1 1 1 4 ]
06: [ 1 1 1 1 1 1 2 3 ]
07: [ 1 1 1 1 1 1 5 ]
08: [ 1 1 1 1 1 2 2 2 ]
09: [ 1 1 1 1 1 2 4 ]
10: [ 1 1 1 1 1 3 3 ]
11: [ 1 1 1 1 1 6 ]
12: [ 1 1 1 1 2 2 3 ]
13: [ 1 1 1 1 2 5 ]
14: [ 1 1 1 1 3 4 ]
15: [ 1 1 1 2 2 2 2 ]
16: [ 1 1 1 2 2 4 ]
17: [ 1 1 1 2 3 3 ]
18: [ 1 1 1 3 5 ]
19: [ 1 1 1 4 4 ]
20: [ 1 1 2 2 2 3 ]
21: [ 1 1 2 2 5 ]
22: [ 1 1 2 3 4 ]
23: [ 1 1 3 3 3 ]
24: [ 1 2 2 2 2 2 ]
25: [ 1 2 2 2 4 ]
26: [ 1 2 2 3 3 ]
PROG
(PARI) \\ here b: nr parts; k: max part, b+w-1: partition sum.
seq(n)={my(M=matrix(n, 1), v=vector(n+1)); M[1, 1]=v[1]=v[2]=1; for(b=2, n, M=matrix(n-b+1, b, w, k, if(w>=k, sum(j=1, min(b-1, k), M[w+1-k, j]))); v+=concat(vector(b), vecsum(Vec(M))~)); v} \\ Andrew Howroyd, Jan 19 2024
(PARI)
N=55;
VP=vector(N+1); VP[1] =VP[2] = 1; \\ one-based; memoization
P(n) = VP[n+1];
for (n=2, N, VP[n+1] = sum( i=0, n-1, P(i) * P(n-1 -i) * x^((i+1)*(n-1-i)) ) );
x='x+O('x^N);
A(x) = sum(n=0, N, x^n * P(n) );
Vec(A(x)) \\ Joerg Arndt, Jan 23 2024
CROSSREFS
Cf. A008930 (subdiagonal compositions), A010054 (subdiagonal partitions into distinct parts).
Cf. A219282 (superdiagonal compositions), A238873 (superdiagonal partitions), A238394 (strictly superdiagonal partitions), A238874 (strictly superdiagonal compositions), A025147 (strictly superdiagonal partitions into distinct parts).
Cf. A238859 (compositions of n with subdiagonal growth), A238876 (partitions with subdiagonal growth), A001227 (partitions into distinct parts with subdiagonal growth).
Cf. A238860 (partitions with superdiagonal growth), A238861 (compositions with superdiagonal growth), A000009 (partitions into distinct parts have superdiagonal growth by definition).
Cf. A129176 and A227543.
Sequence in context: A350837 A239945 A363740 * A344740 A241391 A241736
KEYWORD
nonn
AUTHOR
Joerg Arndt, Mar 24 2014
STATUS
approved