OFFSET
1,4
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 1..1000
V. M. Zhuravlev, Horizontally-convex polyiamonds and their generating functions, Mat. Pros. 17 (2013), 107-129 (in Russian). See the sequence j(n).
Index entries for linear recurrences with constant coefficients, signature (1,5,-1,-7,-1,6,6,1,-1).
FORMULA
G.f.: -x^2*(x^8+2*x^7+x^6-2*x^5-2*x^4-x^3+3*x^2+x-1) / ((x+1)^2*(x^7-3*x^6-x^5-x^4+4*x^3-3*x+1)). - Colin Barker, Mar 20 2014
MAPLE
g:=proc(n) option remember; local t1; t1:=[2, 3, 6, 14, 34, 84, 208, 515];
if n <= 7 then t1[n] else
3*g(n-1)-4*g(n-3)+g(n-4)+g(n-5)+3*g(n-6)-g(n-7); fi; end proc;
[seq(g(n), n=1..32)]; # A238823
d:=proc(n) option remember; global g; local t1; t1:=[0, 1];
if n <= 2 then t1[n] else
g(n-1)-2*d(n-1)-d(n-2); fi; end proc;
[seq(d(n), n=1..32)]; # A238824
p:=proc(n) option remember; global d; local t1; t1:=[0, 0, 0, 1];
if n <= 4 then t1[n] else
p(n-2)+p(n-3)+2*(d(n-3)+d(n-4)); fi; end proc;
[seq(p(n), n=1..32)]; # A238825
h:=n->p(n+3)-p(n+1); [seq(h(n), n=1..32)]; #A238826
r:=proc(n) option remember; global p; local t1; t1:=[0, 0, 0, 0];
if n <= 4 then t1[n] else
r(n-2)+p(n-3); fi; end proc;
[seq(r(n), n=1..32)]; # A238827
b:=n-> if n=1 then 0 else d(n-1)+p(n); fi; [seq(b(n), n=1..32)]; #A238828
a:=n->g(n)-h(n); [seq(a(n), n=1..32)]; #A238829
i:=proc(n) option remember; global b, r; local t1; t1:=[0, 0];
if n <= 2 then t1[n] else
i(n-2)+b(n-1)+r(n); fi; end proc;
[seq(i(n), n=1..32)]; # A238830
q:=n-> if n<=2 then 0 else r(n)+i(n-2); fi;
[seq(q(n), n=1..45)]; # A238831
e:=n-> if n<=1 then 0 else d(n-1)+i(n-1); fi;
[seq(e(n), n=1..45)]; # A238832
j:=n-> if n<=2 then n-1 else d(n-2)+e(n-1); fi;
[seq(j(n), n=1..45)]; # A238833
MATHEMATICA
CoefficientList[Series[- x (x^8 + 2 x^7 + x^6 - 2 x^5 - 2 x^4 - x^3 + 3 x^2 + x - 1)/((x + 1)^2 (x^7 - 3 x^6 - x^5 - x^4 + 4 x^3 - 3 x + 1)), {x, 0, 40}], x] (* Vincenzo Librandi, Mar 21 2014 *)
LinearRecurrence[{1, 5, -1, -7, -1, 6, 6, 1, -1}, {0, 1, 0, 2, 2, 7, 16, 40, 101, 246}, 40] (* Harvey P. Dale, Jul 23 2021 *)
PROG
(PARI) concat(0, Vec(-x^2*(x^8+2*x^7+x^6-2*x^5-2*x^4-x^3+3*x^2+x-1)/((x+1)^2*(x^7-3*x^6-x^5-x^4+4*x^3-3*x+1)) + O(x^100))) \\ Colin Barker, Mar 20 2014
(Magma) m:=40; R<x>:=LaurentSeriesRing(RationalField(), m); [0] cat Coefficients(R! -x^2*(x^8+2*x^7+x^6-2*x^5-2*x^4-x^3+3*x^2+x-1) / ((x+1)^2*(x^7-3*x^6-x^5-x^4+4*x^3-3*x+1))); // Vincenzo Librandi, Mar 21 2014
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Mar 08 2014
STATUS
approved