login
A238631
Number of partitions of 4^n into parts that are at most 4.
2
1, 5, 64, 2280, 123464, 7566280, 478968264, 30569959880, 1955134763464, 125107148059080, 8006513870533064, 512411390124519880, 32794241006913221064, 2098830017067059278280, 134325098574291643691464, 8596805948466686953550280, 550195574937260409780728264
OFFSET
0,2
FORMULA
a(n) = [x^(4^n)] Product_{j=1..4} 1/(1-x^j).
G.f.: -(2048*x^4+1460*x^3-1067*x^2+80*x-1) / ((1-x) *(1-4*x) *(1-4^2*x) *(1-4^3*x)).
a(n) = (128 + 9*2^(3+2*n) + 15*16^n + 64^n)/144 for n > 0. - Stefano Spezia, Oct 08 2022
MAPLE
gf:= -(2048*x^4+1460*x^3-1067*x^2+80*x-1)/((1-x)*(1-4*x)*(1-4^2*x)*(1-4^3*x)):
a:= n-> coeff(series(gf, x, n+1), x, n):
seq(a(n), n=0..20);
CROSSREFS
Row n=4 of A238016.
Sequence in context: A061684 A061698 A351020 * A220557 A266962 A126955
KEYWORD
nonn,easy
AUTHOR
Alois P. Heinz, Mar 01 2014
STATUS
approved