login
A238633
Number of partitions of 6^n into parts that are at most 6.
2
1, 11, 2432, 6889527, 44056912182, 331281477244572, 2561606354507677872, 19900384510848921094632, 154721208025657067873668152, 1203080775953722005263023646232, 9355115500676554620340590943203672, 72745325498731282220397926627254957272
OFFSET
0,2
LINKS
FORMULA
a(n) = [x^(6^n)] Product_{j=1..6} 1/(1-x^j).
G.f.: -(29386561536*x^7 +220531481280*x^6 +188259164496*x^5 -77061923145*x^4 +2575778195*x^3 -12336681*x^2 +9320*x-1) / Product_{j=0..5} 1-6^j*x.
MAPLE
gf:= -(29386561536*x^7 +220531481280*x^6 +188259164496*x^5 -77061923145*x^4 +2575778195*x^3 -12336681*x^2+9320*x-1)/ mul(1-6^j*x, j=0..5):
a:= n-> coeff(series(gf, x, n+1), x, n):
seq(a(n), n=0..20);
CROSSREFS
Row n=6 of A238016.
Sequence in context: A301473 A087403 A085878 * A266815 A064779 A239897
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Mar 01 2014
STATUS
approved