login
A238544
Number of partitions p of n such that max(p) - (number of parts of p) is a part of p.
1
0, 0, 0, 1, 0, 2, 1, 4, 3, 7, 6, 14, 12, 23, 24, 39, 41, 66, 71, 106, 120, 168, 193, 268, 306, 411, 482, 629, 737, 953, 1116, 1420, 1675, 2096, 2474, 3076, 3619, 4455, 5257, 6410, 7548, 9157, 10761, 12970, 15238, 18248, 21402, 25531, 29870, 35466, 41452
OFFSET
1,6
FORMULA
a(n) + A238545(n) = A000041(n).
EXAMPLE
a(6) counts these partitions: 42, 411.
MATHEMATICA
Table[Count[IntegerPartitions[n], p_ /; MemberQ[p, Max[p] - Length[p]]], {n, 50}]
CROSSREFS
Cf. A238545.
Sequence in context: A120751 A054082 A339381 * A101708 A339559 A248880
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Feb 28 2014
STATUS
approved