login
A238542
Number of partitions p of n such that 2*min(p) + (number of parts of p) is not a part of p.
0
1, 2, 3, 5, 6, 11, 14, 20, 28, 40, 50, 72, 93, 124, 161, 213, 270, 355, 447, 573, 723, 919, 1142, 1441, 1786, 2225, 2745, 3398, 4160, 5121, 6240, 7623, 9255, 11246, 13577, 16423, 19753, 23767, 28478, 34125, 40723, 48614, 57815, 68740, 81496, 96568, 114103
OFFSET
1,2
FORMULA
a(n) + A097091(n) = A000041(n).
EXAMPLE
a(8) counts all the 22 partitions of 8 except 62 and 521.
MATHEMATICA
Table[Count[IntegerPartitions[n], p_ /; ! MemberQ[p, Length[p] + 2*Min[p]]], {n, 50}]
CROSSREFS
Cf. A097091.
Sequence in context: A039037 A050049 A132581 * A184640 A240490 A039839
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Feb 28 2014
STATUS
approved