login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A238113 Expansion of (3-5*x-3*sqrt(x^2-6*x+1))/(4*x). 1
1, 3, 9, 33, 135, 591, 2709, 12837, 62379, 309147, 1556577, 7940169, 40946607, 213118119, 1118080557, 5906404557, 31390735059, 167727039027, 900478280889, 4855086475761, 26277928981335, 142724482802943, 777647813128389, 4249385026394613, 23282201473312635, 127874913883456971, 703929221807756049 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

Number of associate averaging words of degree n.

LINKS

G. C. Greubel, Table of n, a(n) for n = 0..1000

Li Guo and Jun Pei, Averaging algebras, Schroeder numbers and rooted trees, arXiv:1401.7386 [math.RA], 2014.

FORMULA

a(n) ~ 3*sqrt(3*sqrt(2)-4) * (3+2*sqrt(2))^(n+1) / (4*sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Mar 05 2014

a(n) = -3/4*GegenbauerC(n+1,-1/2,3), n>0. - Benedict W. J. Irwin, Sep 26 2016

From Alexander Burstein, Apr 19 2018: (Start)

G.f.: A(x) = r+s-1 = (3*r-1)/2 = 3*s-2 = 1+3*x*r*s, where r=r(x) is g.f. of A006318 and s=s(x) is g.f. of A001003.

Series reversion of x*A(x) is x*A(-x). (End)

MATHEMATICA

CoefficientList[Series[(3-5x-3*Sqrt[x^2-6x+1])/(4x), {x, 0, 30}], x] (* Harvey P. Dale, Mar 29 2016 *)

Join[{1}, Table[-(3/4) GegenbauerC[n+1, -(1/2), 3], {n, 1, 30}]] (* Benedict W. J. Irwin, Sep 26 2016 *)

PROG

(PARI) x='x+O('x^50); Vec((3-5*x-3*sqrt(x^2-6*x+1))/(4*x)) \\ G. C. Greubel, Jun 01 2017

CROSSREFS

Sequence in context: A236408 A217617 A320181 * A098742 A320182 A320183

Adjacent sequences:  A238110 A238111 A238112 * A238114 A238115 A238116

KEYWORD

nonn

AUTHOR

N. J. A. Sloane, Mar 04 2014

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 12 07:03 EST 2019. Contains 329052 sequences. (Running on oeis4.)