OFFSET
1,3
COMMENTS
If k = 0, then the two numbers in the "prime pair" are actually the same number, 2^n - 1 (a Mersenne prime; see A000668).
EXAMPLE
a(2) = 1 because 2^2-(2*0+1)=3 and (2*0+1)*2^2-1=3 for k=0;
a(3) = 2 because 2^3-(2*0+1)=7 and (2*0+1)*2^3-1=7 for k=0, 2^3-(2*1+1)=5 and (2*1+1)*2^3-1=23 for k=1;
a(4) = 2 because 2^4-(2*1+1)=13 and (2*1+1)*2^4-1=47 for k=1, 2^4-(2*2+1)=11 and (2*2+1)*2^4-1=59 for k=2.
MATHEMATICA
a[n_] := Length@Select[Range[0, n-1], PrimeQ[2^n - (2*#+1)] && PrimeQ[(2*#+1) * 2^n-1] &]; Array[a, 90] (* Giovanni Resta, Mar 04 2014 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Ilya Lopatin and Juri-Stepan Gerasimov, Mar 04 2014
EXTENSIONS
a(6), a(42), a(48)-a(87) from Giovanni Resta, Mar 04 2014
STATUS
approved