login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A236191
a(n) = (-1)^floor( (n-1) / 3 ) * F(n), where F = Fibonacci.
1
0, 1, 1, 2, -3, -5, -8, 13, 21, 34, -55, -89, -144, 233, 377, 610, -987, -1597, -2584, 4181, 6765, 10946, -17711, -28657, -46368, 75025, 121393, 196418, -317811, -514229, -832040, 1346269, 2178309, 3524578, -5702887, -9227465, -14930352, 24157817, 39088169
OFFSET
0,4
FORMULA
G.f.: (x + x^2 + 2*x^3 + x^4 - x^5) / (1 + 4*x^3 - x^6).
a(n) = -4 * a(n-3) + a(n-6). a(-n) = (-1)^floor( (n-2) / 3) * a(n) for all n in Z.
a(n) * a(n+3) = a(n+1)^2 - a(n+2)^2 for all n in Z.
EXAMPLE
G.f. = x + x^2 + 2*x^3 - 3*x^4 - 5*x^5 - 8*x^6 + 13*x^7 + 21*x^8 + ...
MATHEMATICA
a[ n_] := (-1)^Quotient[n-1, 3] Fibonacci[n];
CoefficientList[Series[(x + x^2 + 2 x^3 + x^4 - x^5)/(1 + 4 x^3 - x^6), {x, 0, 50}], x] (* Vincenzo Librandi, Jan 20 2014 *)
PROG
(PARI) {a(n) = (-1)^( (n-1) \ 3) * fibonacci( n)};
(Magma) I:=[0, 1, 1, 2, -3, -5]; [n le 6 select I[n] else -4*Self(n-3)+Self(n-6): n in [1..40]]; // Vincenzo Librandi, Jan 20 2014
CROSSREFS
Cf. A000045.
Sequence in context: A132636 A152163 A039834 * A333378 A000045 A324969
KEYWORD
sign,easy
AUTHOR
Michael Somos, Jan 19 2014
STATUS
approved