login
A235984
Primes p with f(p), f(f(p)), f(f(f(p))), f(f(f(f(p)))), f(f(f(f(f(p))))) all prime, where f(n) = prime(n) - n + 1.
2
2, 3, 501187, 560029, 2076881, 2836003, 2907011, 8254787, 8822347, 10322189, 11329181, 11354641, 12307693, 14528069, 15801601, 17757427, 19023091, 24995669, 25871971
OFFSET
1,1
COMMENTS
By the general conjecture in A235925, this sequence should have infinitely many terms.
LINKS
EXAMPLE
a(3) = 501187 with 501187, f(501187) = 6886357, f(6886357) = 113948711, f(113948711) = 2224096873, f(2224096873) = 50351471977 and f(50351471977) = 1303792228393 all prime.
MATHEMATICA
f[n_]:=Prime[n]-n+1
p[k_]:=PrimeQ[f[Prime[k]]]&&PrimeQ[f[f[Prime[k]]]]&&PrimeQ[f[f[f[Prime[k]]]]]&&PrimeQ[f[f[f[f[Prime[k]]]]]]&&PrimeQ[f[f[f[f[f[Prime[k]]]]]]]
n=0; Do[If[p[k], n=n+1; Print[n, " ", Prime[k]]], {k, 1, 10^7}]
KEYWORD
nonn
AUTHOR
Zhi-Wei Sun, Jan 17 2014
STATUS
approved