login
A235925
Primes p with q = prime(p) - p + 1 and r = prime(q) - q + 1 both prime.
8
2, 3, 5, 17, 23, 41, 61, 83, 181, 271, 311, 337, 757, 953, 1277, 1451, 1753, 1777, 2027, 2081, 2341, 2707, 2713, 2749, 2819, 2861, 2879, 2909, 2971, 3121, 3163, 3329, 3697, 3779, 3833, 3881, 3907, 4027, 4051, 4129, 4363, 4549, 5333, 5483, 5659, 5743, 5813, 5897, 6029, 6053
OFFSET
1,1
COMMENTS
By the conjecture in A235924, this sequence should have infinitely many terms.
Conjecture: For any integer m > 1, there are infinitely many chains p(1) < p(2) < ... < p(m) of m primes with p(k+1) = prime(p(k)) - p(k) + 1 for all 0 < k < m.
LINKS
EXAMPLE
a(1) = 2 since prime(2) - 2 + 1 = 2 is prime.
a(2) = 3 since prime(3) - 3 + 1 = 3 is prime.
a(3) = 5 since 5, prime(5) - 5 + 1 = 7 and prime(7) - 7 + 1 = 11 are all prime.
MATHEMATICA
f[n_]:=Prime[n]-n+1
n=0; Do[If[PrimeQ[f[Prime[k]]]&&PrimeQ[f[f[Prime[k]]]], n=n+1; Print[n, " ", Prime[k]]], {k, 1, 1000}]
bpQ[n_]:=Module[{q=Prime[n]-n+1}, AllTrue[{q, Prime[q]-q+1}, PrimeQ]]; Select[Prime[Range[800]], bpQ](* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, Nov 07 2014 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Zhi-Wei Sun, Jan 17 2014
STATUS
approved