login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A233509 Number of tilings of a 2 X 5 X n box using bricks of shape 3 X 1 X 1 and 2 X 1 X 1. 5
1, 15, 1062, 148414, 16512483, 2043497465, 257251613508, 31941208907916, 3990164870713039, 498504394558488109, 62237975023439983192, 7773270324407375580946, 970802515607358269506951, 121240108673115249961266051, 15141593230837339625055971170 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

LINKS

Alois P. Heinz, Table of n, a(n) for n = 0..40

EXAMPLE

a(1) = A219866(5,2) = A129682(5) = A219866(2,5) = A219868(2) = 15:

.___.  .___.  .___.  .___.  .___.  .___.  .___.  .___.

| | |  |___|  | | |  |___|  | | |  |___|  | | |  |___|

| | |  |___|  |_|_|  | | |  | | |  |___|  |_|_|  | | |

|_|_|  |___|  |___|  |_|_|  |_|_|  |___|  |___|  |_|_|

| | |  | | |  | | |  | | |  |___|  |___|  |___|  |___|

|_|_|  |_|_|  |_|_|  |_|_|  |___|  |___|  |___|  |___|

.___.  .___.  .___.  .___.  .___.  .___.  .___.

| | |  | | |  |___|  |___|  | | |  | | |  |___|

|_|_|  |_|_|  |___|  |___|  |_| |  | |_|  | | |

| | |  | | |  | | |  | | |  | |_|  |_| |  | | |

| | |  |_|_|  | | |  |_|_|  | | |  | | |  |_|_|

|_|_|  |___|  |_|_|  |___|  |_|_|  |_|_|  |___|.

MAPLE

b:= proc(n, l) option remember; local k, t; t:= min(l[]);

      if n=0 then 1 elif t>0 then b(n-t, map(h->h-t, l))

    else for k while l[k]>0 do od;

         add(`if`(n>=j, b(n, s(k=j, l)), 0), j=2..3)+

         `if`(k<=5 and l[k+5]=0, b(n, s(k=1, k+5=1, l)), 0)+

         `if`(irem(k, 5)>0 and l[k+1]=0, b(n, s(k=1, k+1=1, l)), 0)+

         `if`(irem(k, 5) in [$1..3] and l[k+1]=0 and l[k+2]=0,

         b(n, s(k=1, k+1=1, k+2=1, l)), 0)

      fi

    end:

a:=n-> b(n, [0$10]): s:=subsop:

seq(a(n), n=0..4);

MATHEMATICA

b[n_, l_] := b[n, l] = Module[{k, t}, t = Min[l]; Which[n == 0, 1, t > 0, b[n-t, l-t], True, For[k = 1, l[[k]] > 0, k++]; Sum[If[n >= j, b[n, ReplacePart[l, k -> j]], 0], {j, 2, 3}] + If[k <= 5 && l[[k+5]] == 0, b[n, ReplacePart[l, {k -> 1, k+5 -> 1}]], 0] + If[Mod[k, 5] > 0 && l[[k+1]] == 0, b[n, ReplacePart[l, {k -> 1, k+1 -> 1}]], 0] + If[1 <= Mod[k, 5] <= 3 && l[[k+1]] == 0 && l[[k+2]] == 0, b[n, ReplacePart[l, {k -> 1, k+1 -> 1, k+2 -> 1}]], 0]]]; a[n_] := b[n, Array[0&, 10]]; Table[Print[an = a[n]]; an, {n, 0, 14}] (* Jean-Fran├žois Alcover, Dec 30 2013, translated from Maple *)

CROSSREFS

Cf. A000931, A129682, A219866, A219867, A233313, A233505, A233506, A233507.

Sequence in context: A064625 A241331 A205602 * A206162 A203409 A207980

Adjacent sequences:  A233506 A233507 A233508 * A233510 A233511 A233512

KEYWORD

nonn

AUTHOR

Alois P. Heinz, Dec 11 2013

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 23 12:53 EDT 2020. Contains 337310 sequences. (Running on oeis4.)