The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A203409 Indices of heptagonal numbers that are also decagonal. 2
 1, 15, 1075, 21201, 1549717, 30571395, 2234690407, 44083929957, 3222422016745, 63568996426167, 4646730313455451, 91666448762602425, 6700581889580743165, 132182955546676270251, 9662234438045118188047, 190607730231858419099085, 13932935359079170846420177 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS As n increases, the ratios of consecutive terms settle into an approximate 2-cycle with a(n)/a(n-1) bounded above and below by 1/9*(329+104*sqrt(10)) and 1/9*(89+28*sqrt(10)) respectively. LINKS Index entries for linear recurrences with constant coefficients, signature (1,1442,-1442,-1,1). FORMULA G.f.: x*(1+14*x-382*x^2-62*x^3-3*x^4) / ((1-x)*(1-38*x+x^2)*(1+38*x+x^2)). a(n) = 1442*a(n-2)-a(n-4)-432. a(n) = a(n-1)+1442*a(n-2)-1442*a(n-3)-a(n-4)+a(n-5). a(n) = 1/40*(((-1)^n-sqrt(10))*(2-sqrt(10))*(3+sqrt(10))^(2*n-1)+((-1)^n+sqrt(10))*(2+sqrt(10))*(3-sqrt(10))^(2*n-1)+12). a(n) = ceiling(1/40*((-1)^n-sqrt(10))*(2-sqrt(10))*(3+sqrt(10))^(2*n-1)). EXAMPLE The second heptagonal number that is also decagonal is A000566(15)=540. Hence a(2)=15. MATHEMATICA LinearRecurrence[{1, 1442, -1442, -1, 1}, {1, 15, 1075, 21201, 1549717}, 17] CROSSREFS Cf. A203408, A203410, A001107, A000566. Sequence in context: A205602 A233509 A206162 * A207980 A131313 A208346 Adjacent sequences:  A203406 A203407 A203408 * A203410 A203411 A203412 KEYWORD nonn,easy AUTHOR Ant King, Jan 02 2012 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 30 18:13 EDT 2020. Contains 338090 sequences. (Running on oeis4.)