login
A232970
Expansion of (1-3*x)/(1-5*x+3*x^2+x^3).
4
1, 2, 7, 28, 117, 494, 2091, 8856, 37513, 158906, 673135, 2851444, 12078909, 51167078, 216747219, 918155952, 3889371025, 16475640050, 69791931223, 295643364940, 1252365390981, 5305104928862, 22472785106427, 95196245354568, 403257766524697, 1708227311453354, 7236167012338111, 30652895360805796
OFFSET
0,2
LINKS
M. Dziemianczuk, Counting Lattice Paths With Four Types of Steps, Graphs and Combinatorics, September 2013, DOI 10.1007/s00373-013-1357-1.
Hermann Stamm-Wilbrandt, 6 interlaced bisections
FORMULA
a(n) = 5*a(n-1) - 3*a(n-2) - a(n-3). - N. J. A. Sloane, Jun 23 2017
a(n) = (Fibonacci(3*n+1) + 1)/2 = Sum_{k=0..n} Fibonacci(3*k-1). - Ehren Metcalfe, Apr 15 2019
a(2*n) = A294262(2*n); a(2*n+1) = A254627(2*n+2). See "6 interlaced bisections" link. - Hermann Stamm-Wilbrandt, Apr 18 2019
MATHEMATICA
LinearRecurrence[{5, -3, -1}, {1, 2, 7}, 30] (* Vincenzo Librandi, Jun 24 2017 *)
CoefficientList[Series[(1-3x)/(1-5x+3x^2+x^3), {x, 0, 30}], x] (* Harvey P. Dale, Oct 19 2024 *)
PROG
(Magma) I:=[1, 2, 7]; [n le 3 select I[n] else 5*Self(n-1)- 3*Self(n-2)-Self(n-3): n in [1..30]]; // Vincenzo Librandi, Jun 24 2017
(PARI) Vec((1-3*x)/(1-5*x+3*x^2+x^3) + O(x^30)) \\ Felix Fröhlich, Apr 15 2019
(Sage) [(fibonacci(3*n+1) +1)/2 for n in (0..30)] # G. C. Greubel, Apr 19 2019
CROSSREFS
Sequence in context: A364145 A128611 A061539 * A116078 A150647 A150648
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Dec 05 2013
STATUS
approved