login
A116078
Column 0 of triangle A116077.
2
1, 2, 7, 28, 117, 496, 2110, 8968, 38017, 160648, 676626, 2840872, 11892562, 49650368, 206773372, 859186768, 3562780057, 14746127608, 60929182282, 251358948328, 1035479267542, 4260071237728, 17505144024292
OFFSET
0,2
COMMENTS
a(n) equals the number of sequences (x(1),...,x(n)) of n numbers from {0,1,...,n} such that x(i+1) <= x(i)+1 for i=1,...,n-1 and x(1) <= x(n)+1. This is proved in a linked pdf, as well as another interpretation as the downward closed subsets of a certain poset. - Clayton Thomas, Jul 16 2019
LINKS
FORMULA
G.f.: A(x) = 1/sqrt(1-4*x) + 4*x^2/(1+sqrt(1-4*x))^2/(1-4*x)^(3/2).
a(n) = (n+3)*C(2*n-1,n) - 2^(2*n-1), a(n) ~ 2^(2*n - 1) * sqrt(n) / sqrt(Pi). - Vaclav Kotesovec, Oct 28 2012
Conjecture: a(n) = 2^(2*n)*(Sum_{j=1..n+2-floor((n+3)/2)} (cos(j*Pi/(n+3)))^(2*n)). - L. Edson Jeffery, Nov 23 2013
MATHEMATICA
Flatten[{1, Table[(n+3)*Binomial[2*n-1, n]-2^(2*n-1), {n, 1, 20}]}] (* Vaclav Kotesovec, Oct 28 2012 *)
PROG
(PARI) {a(n)=local(X=x+x*O(x^n)); polcoeff(1/sqrt(1-4*X)+4*X^2/(1+sqrt(1-4*X))^2/(1-4*X)^(3/2), n, x)}
CROSSREFS
Cf. A116077.
Sequence in context: A128611 A061539 A232970 * A150647 A150648 A150649
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Feb 04 2006
STATUS
approved