login
A232929
For each complex nonprincipal Dirichlet character chi modulo n, let f(chi) be the least positive integer k for which chi(k) is not in the set {0,1}. Then a(n) is the sum of f(chi) over all such chi.
3
2, 3, 6, 5, 11, 11, 10, 9, 18, 17, 22, 15, 19, 23, 31, 25, 34, 29, 25, 31, 45, 47, 38, 39, 34, 35, 54, 53, 63, 47, 41, 45, 47, 57, 70, 51, 51, 61, 79, 61, 84, 61, 51, 65, 93, 87, 83, 57, 71, 75, 102, 85, 79, 81, 73, 81, 114, 119, 118, 87, 85, 95, 97, 97, 130, 95, 89, 85, 143, 127, 151, 107, 83, 109, 119, 125, 155, 125, 106, 125, 162, 135, 133, 123, 113, 125, 181, 165, 147, 131, 139, 137, 147, 167, 193, 123, 121, 125, 198, 157, 203, 161, 123, 153, 210, 177, 216, 121, 151, 153, 225, 183, 179, 169, 159, 179, 201, 255
OFFSET
3,1
LINKS
S. R. Finch, Average least nonresidues, December 4, 2013. [Cached copy, with permission of the author]
G. Martin and P. Pollack, The average least character non-residue and further variations on a theme of Erdos, J. London Math. Soc. 87 (2013) 22-42.
R. J. Mathar, Table of Dirichlet L-series and prime zeta modulo functions for small moduli, arXiv:1008.2547 [math.NT], 2010-2015.
EXAMPLE
a(6) = 5 since there is one nonprincipal Dirichlet character mod 6, namely A134667, whose fifth term is -1.
CROSSREFS
Cf. A000010.
Sequence in context: A039653 A335372 A106379 * A001634 A172989 A095113
KEYWORD
nonn
AUTHOR
Steven Finch, Dec 02 2013
STATUS
approved