This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A134667 Period 6: repeat [0, 1, 0, 0, 0, -1]. 14
 0, 1, 0, 0, 0, -1, 0, 1, 0, 0, 0, -1, 0, 1, 0, 0, 0, -1, 0, 1, 0, 0, 0, -1, 0, 1, 0, 0, 0, -1, 0, 1, 0, 0, 0, -1, 0, 1, 0, 0, 0, -1, 0, 1, 0, 0, 0, -1, 0, 1, 0, 0, 0, -1, 0, 1, 0, 0, 0, -1, 0, 1, 0, 0, 0, -1, 0, 1, 0, 0, 0, -1, 0, 1, 0, 0, 0, -1, 0, 1, 0, 0, 0, -1, 0, 1, 0, 0, 0, -1, 0, 1, 0, 0, 0, -1, 0, 1, 0, 0, 0, -1, 0, 1, 0 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,1 COMMENTS Dirichlet series for the non-principal character modulo 6: L(s,chi) = Sum_{n>=1} a(n)/n^s. For example L(1,chi) = A093766, L(2,chi) = A214552, and L(3,chi) = Pi^3/(18*sqrt(3)). See Jolley eq. (314) and arXiv:1008.2547 L(m=6,r=2,s). - R. J. Mathar, Jul 31 2010 REFERENCES T. M. Apostol, Introduction to Analytic Number Theory, Springer-Verlag, 1986, page 139, k=6, Chi_2(n). L. B. W. Jolley, Summation of Series, Dover (1961). LINKS R. J. Mathar, Table of Dirichlet L-series.., arXiv:1008.2547 [math.NT], 2010-2015. Index entries for linear recurrences with constant coefficients, signature (0,-1,0,-1). FORMULA a(n) = (1/6)*{-(n mod 6)+[(n+1) mod 6]+[(n+4) mod 6]-[(n+5) mod 6]}. - Paolo P. Lava, Jan 28 2008 Euler transform of length 6 sequence [0, 0, 0, -1, 0, 1]. - Michael Somos, Feb 10 2008 G.f.: x * (1 - x^4) / (1 - x^6) = x*(1+x^2) / (1 + x^2 + x^4) = x*(1+x^2) / ( (1+x+x^2)*(x^2-x+1) ). G.f. A(x) satisfies 0 = f(A(x), A(x^2), A(x^3)) where f(u, v, w) = w * (2 + v - u^2 - 2*v^2) - 2 * u * v. - Michael Somos, Aug 11 2009 a(n) is multiplicative with a(p^e) = 0^e if p = 2 or p = 3, a(p^e) = 1 if p == 1 (mod 6), a(p^e) = (-1)^e if p == 5 (mod 6). - Michael Somos, Aug 11 2009 a(-n) = -a(n). a(n+6) = a(n). a(2*n) = a(3*n) = 0. sqrt(3)*a(n) = sin(Pi*n/3) + sin(2*Pi*n/3). - R. J. Mathar, Oct 08 2011 a(n) + a(n-2) + a(n-4) = 0 for n>3. - Wesley Ivan Hurt, Jun 20 2016 E.g.f.: 2*sin(sqrt(3)*x/2)*cosh(x/2)/sqrt(3). - Ilya Gutkovskiy, Jun 21 2016 EXAMPLE G.f. = x - x^5 + x^7 - x^11 + x^13 - x^17 + x^19 - x^23 + x^25 - x^29 + ... MAPLE A134667:=n->[0, 1, 0, 0, 0, -1][(n mod 6)+1]: seq(A134667(n), n=0..100); # Wesley Ivan Hurt, Jun 20 2016 MATHEMATICA a[ n_] := JacobiSymbol[-12, n]; (* Michael Somos, Apr 24 2014 *) a[ n_] := {1, 0, 0, 0, -1, 0}[[Mod[n, 6, 1]]]; (* Michael Somos, Apr 24 2014 *) PROG (PARI) {a(n) = [0, 1, 0, 0, 0, -1][n%6+1]}; /* Michael Somos, Feb 10 2008 */ (PARI) {a(n) = kronecker(-12, n)}; /* Michael Somos, Feb 10 2008 */ (PARI) {a(n) = if( n < 0, -a(-n), if( n<1, 0, direuler(p=2, n, 1 / (1 - kronecker(-12, p) * X))[n]))}; /* Michael Somos, Aug 11 2009 */ (MAGMA) &cat[[0, 1, 0, 0, 0, -1]^^20]; // Wesley Ivan Hurt, Jun 20 2016 CROSSREFS Cf. A093766, A120325, A131719, A131720, A131735, A131736, A214552. Sequence in context: A322796 A109017 A110161 * A117943 A285969 A189664 Adjacent sequences:  A134664 A134665 A134666 * A134668 A134669 A134670 KEYWORD sign,easy,mult AUTHOR Paul Curtz, Jan 26 2008 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified July 19 12:35 EDT 2019. Contains 325159 sequences. (Running on oeis4.)