login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A232735
Decimal expansion of the real part of I^(1/7), or cos(Pi/14).
5
9, 7, 4, 9, 2, 7, 9, 1, 2, 1, 8, 1, 8, 2, 3, 6, 0, 7, 0, 1, 8, 1, 3, 1, 6, 8, 2, 9, 9, 3, 9, 3, 1, 2, 1, 7, 2, 3, 2, 7, 8, 5, 8, 0, 0, 6, 1, 9, 9, 9, 7, 4, 3, 7, 6, 4, 8, 0, 7, 9, 5, 7, 5, 0, 8, 7, 6, 4, 5, 9, 3, 1, 6, 3, 4, 4, 0, 3, 7, 9, 3, 7, 0, 0, 1, 1, 2, 4, 5, 8, 1, 2, 0, 7, 3, 6, 9, 2, 5, 1, 6, 4, 0, 1, 4
OFFSET
0,1
COMMENTS
The corresponding imaginary part is in A232736.
Root of the equation -7 + 56*x^2 - 112*x^4 + 64*x^6 = 0. - Vaclav Kotesovec, Apr 04 2021
LINKS
A. Arman, A. Bondarenko, and A. Prymak, Convex bodies of constant width with exponential illumination number, arXiv:2304.10418 [math.MG], 2023.
EXAMPLE
0.974927912181823607018131682993931217232785800619997437648...
MATHEMATICA
RealDigits[Cos[Pi/14], 10, 120][[1]] (* Harvey P. Dale, Dec 15 2018 *)
PROG
(Magma) R:= RealField(100); Cos(Pi(R)/14); // G. C. Greubel, Sep 19 2022
(SageMath) numerical_approx(cos(pi/14), digits=120) # G. C. Greubel, Sep 19 2022
CROSSREFS
Cf. A232736 (imaginary part), A010503 (real(I^(1/2))), A010527 (real(I^(1/3))), A144981 (real(I^(1/4))), A019881 (real(I^(1/5))), A019884 (real(I^(1/6))), A232737 (real(I^(1/8))), A019889 (real(I^(1/9))), A019890 (real(I^(1/10))).
Sequence in context: A155958 A010546 A361603 * A191760 A237841 A109846
KEYWORD
nonn,cons,easy
AUTHOR
Stanislav Sykora, Nov 29 2013
STATUS
approved