

A232449


The palindromic Belphegor numbers: (10^(n+3)+666)*10^(n+1)+1.


4



16661, 1066601, 100666001, 10006660001, 1000066600001, 100000666000001, 10000006660000001, 1000000066600000001, 100000000666000000001, 10000000006660000000001, 1000000000066600000000001, 100000000000666000000000001, 10000000000006660000000000001, 1000000000000066600000000000001
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,1


COMMENTS

Though this sequence rarely contains primes (see A232448), most of its members tend to contain a few very large prime factors. The name stems from 'Belphegor's Prime', a(13), which was so named by Clifford Pickover (see link). [Comment corrected by N. J. A. Sloane, Dec 14 2015]


LINKS

Stanislav Sykora, Table of n, a(n) for n = 0..497
Clifford A. Pickover, Belphegor's Prime: 1000000000000066600000000000001
Simon Singh, Homer Simpson's scary math problems. BBC News. Retrieved 31 October 2013.
Eric Weisstein's World of Mathematics, Belphegor Number
Wikipedia, Belphegor's prime
Index entries for linear recurrences with constant coefficients, signature (111,1110,1000).


FORMULA

a(n) = 666*10^(n+1)+100^(n+2)+1.
G.f.: (16661  782770*x + 767000*x^2) / ((1  x)*(1  10*x)*(1  100*x)). [Bruno Berselli, Nov 25 2013]


PROG

(PARI) Belphegor(k)=(10^(k+3)+666)*10^(k+1)+1; nmax = 498; v = vector(nmax); for (n=0, #v1, v[n+1]=Belphegor(n))


CROSSREFS

Cf. A232448, A232450, A232451.
Subsequence of A118598.
Sequence in context: A232450 A196023 A108843 * A260312 A224572 A186311
Adjacent sequences: A232446 A232447 A232448 * A232450 A232451 A232452


KEYWORD

nonn,easy


AUTHOR

Stanislav Sykora, Nov 24 2013


STATUS

approved



