

A232451


Number of prime divisors of (10^(n+3) + 666)*10^(n+1) + 1 (see A232449) counted with multiplicity.


2



1, 2, 2, 3, 4, 3, 5, 4, 2, 5, 5, 4, 3, 1, 2, 3, 6, 4, 3, 6, 4, 2, 4, 5, 2, 4, 3, 6, 7, 7, 4, 3, 2, 4, 5, 3, 4, 7, 4, 6, 6, 4, 1, 4, 5
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,2


COMMENTS

The Belphegor numbers (A232449), though large and rarely prime (A232448), tend to contain only very few prime factors. One wonders whether this sequence might be bounded.
From Robert Israel, Feb 23 2017: (Start)
The sequence is unbounded.
Indeed, if p is in A001913 such that the polynomial 10^4 x^2 + 6660 x + 1 has a simple root mod p, then for all k there exist Belphegor numbers divisible by p^k.
For example, p=29 works; we have A232449(n) divisible by 29^k for n = 6, 158, 5522, 41570, 8153130, 107172470, 3553045502, 136793469406, 2761185750502, 142830181379582, ...
(End)


LINKS

Table of n, a(n) for n=0..44.
FactorDB, (10^(n+3)+666)*10^(n+1)+1.
Clifford A. Pickover, Belphegor's Prime: 1000000000000066600000000000001
Wikipedia, Belphegor's prime


MAPLE

seq(numtheory:bigomega(10^(2*n+4)+666*10^(n+1)+1), n=0..30); # Robert Israel, Feb 23 2017


MATHEMATICA

Table[Total[Transpose[FactorInteger[(10^(n + 3) + 666)*10^(n + 1) + 1]][[2]]], {n, 0, 25}] (* T. D. Noe, Nov 28 2013 *)


PROG

(PARI) a(n)=bigomega(10^(n+1)*(10^(n+3)+666)+1) \\ Charles R Greathouse IV, Nov 26 2013
(MAGMA) [&+[p[2]: p in Factorization(666*10^(n+1)+100^(n+2)+1)]: n in [0..40]]; // Bruno Berselli, Nov 27 2013


CROSSREFS

Cf. A001913, A232448 (indices of Belphegor primes), A232449 (Belphegor numbers), A232450 (largest prime factor of A232449(n)).
Sequence in context: A080046 A047675 A187199 * A026254 A091525 A091524
Adjacent sequences: A232448 A232449 A232450 * A232452 A232453 A232454


KEYWORD

nonn,more


AUTHOR

Stanislav Sykora, Nov 24 2013


STATUS

approved



