login
A232076
T(n,k)=Number of (n+1)X(k+1) 0..1 arrays with every element equal to some horizontal, diagonal or antidiagonal neighbor, with top left element zero
15
3, 15, 11, 46, 87, 34, 161, 520, 602, 111, 601, 3681, 6624, 3985, 361, 2208, 26587, 91636, 82996, 26713, 1172, 8053, 189404, 1313477, 2265691, 1043172, 178484, 3809, 29415, 1348429, 18480458, 64298979, 56126173, 13105012, 1193537, 12377, 107534
OFFSET
1,1
COMMENTS
Table starts
......3........15...........46.............161................601
.....11........87..........520............3681..............26587
.....34.......602.........6624...........91636............1313477
....111......3985........82996.........2265691...........64298979
....361.....26713......1043172........56126173.........3154769585
...1172....178484.....13105012......1389867384.......154723539035
...3809...1193537....164650280.....34420057373......7588839921175
..12377...7979619...2068621706....852404560481....372212311236497
..40218..53352090..25989674166..21109624812630..18256039956940439
.130687.356709629.326528021922.522775448585677.895410839428587845
LINKS
FORMULA
Empirical for column k:
k=1: a(n) = 3*a(n-1) +a(n-2) -2*a(n-4)
k=2: a(n) = 5*a(n-1) +11*a(n-2) +2*a(n-3) -8*a(n-5)
k=3: [order 10]
k=4: [order 30]
k=5: [order 50]
Empirical for row n:
n=1: a(n) = 3*a(n-1) +a(n-2) +4*a(n-3) +4*a(n-4)
n=2: [order 8]
n=3: [order 20]
n=4: [order 54]
EXAMPLE
Some solutions for n=3 k=4
..0..0..1..1..0....0..0..1..1..1....0..0..0..1..1....0..1..0..0..1
..0..0..0..0..0....1..1..0..0..0....0..0..0..1..0....1..0..0..1..1
..0..0..1..1..1....1..0..0..0..0....0..0..0..0..0....1..1..0..0..1
..1..1..1..1..1....0..0..1..1..1....1..1..1..1..0....1..0..0..1..0
CROSSREFS
Column 1 is A180762(n+1)
Sequence in context: A337471 A145179 A297897 * A329770 A099476 A063628
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, Nov 17 2013
STATUS
approved